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Preface
The first step in problem solving is determining the reasons and

causes that underlie the problem. Sygh.has been the purpose of this dis-
sertation. Previous work involving the second order even-parity form of
the Boltzmann transport equation successfully demonstrated its ability

to generate ray effect free solutions. These solutions were obtained in
transport media requiring relatively simple geometry and isotropic

scatter. The obvious extension of this work was to attempt a more complex
transport problem. An air-ovef-ground problem was chosen since itoéhds
the necessary complication to meaningfully test the feasibility of such

an extension. Additiéﬁal]y, the solution of this problem is important

in predicting the survivability and vulnerability of military systems

in a nuclear environment. Thus, a successful extension would yield a
worthwhile product. Unfortunately such an extension was not possible
using the standard solution techniques currently available. The positive
aspect of this research is that the problems associated with applying

this equation to more complex transport problems are identified and the
causes are known. The results of this research will provide direction

for future efforts aimed at developing new soTution techniques that will
successfully solve the even-parity form of the Boltzmann equation formu-
lated for these more complex problems.

As in all research efforts, several people played an important role.

I would 1ike to particularly thank Captain David Hardin for the technical
guidance he provided. His contribution to this research effort was signifi-
cant., I would also 1ike to express my gratitude to Dr. Bridgman, Dr. Jones,
and Dr. Kelleher, the other members of my committee, for their suggestions

and constant encouragement. Two members of the Air Force Weapons Labora-

tories (AFWL) deserve special recognition, Mr. John Burgio and Mr. Harry

i1




Murphy. These two individuals qunsored this research through the
Technology Division of the AFWL. Additionally they provided compu?er Ii
support and several DOT 3.5 runs for use in analyzing specific préblems i
encountered during this research, M&.fémi1y deserves my sincerest 51
gratitude and love. Their patience and sacrifices during this research |
have been immense. Finally, I wish to thank the good Lord for providing
me the strength to overcome the frustration that was abundant during

this effort.

John C. Souders, Jr.
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Abstract

Published work indicated that a finite element solution of the even-
parity form of the Boltzmann equation-(EPFBE) provided a means for curing
the ray effect in transport prob1ems.. This conclusion was made after
examining the solutions of some simply defined problems involving plane
geometry and isotropic scatter. The purpose of this research was to
determine the feasibility of applying this equation to more complex prob-
lems. The air-over-ground problem was chosen. This problem is imeortant
in nuclear weapon effects calculations and requires two-dimensional’
cylindrical geometry, anisotropic scatter, and a multigroup solution.
Additionally, the diséfete ordinates method applied to this problem gener-
ates solutions with severe ray effects. Several numerical approaches
based on the finite element method were attempted. The Galerkin method
was applied to the weak form of the EPFBE. A bilinear Lagrange polynomial
trial solution and specially derived synthesis function trial solution
were used. The Galerkin method proved infeasible because the integrals
resulting from this method could not be efficiently evaluated either
numerically or analytically. To solve this integration problem, the
collocation method was attempted. A trial solution consisting of cubic
splines and a simply defined angular synthesis function was used. The
collocation method allowed the analytic evaluation of the resulting inte-
grals but forced a fixed anisotropy on the solution. The multigroup
method applied to the EPFBE resulted in a nested integral problem involv-
ing the source terms of this equation. The complexity of this nesting
problem increased proportionately with the number of energy group used.
This research demonstrated that the finite element method cannot be cost

effectively used in solving the EPFBE for transport probliems requiring

viii




complex geometries, anisotropic scatter, and a multigroup solution.
Criteria were deve]oggd from this research that provides guidelines for
pursuing future work related to the EPFBE. Recommendations based on

these criteria are made.
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T. Introduction

The steady-statghtransport of neutrons and gamma rays from a point
source of simulated nuclear weapon radjat;on in the atmosphere i§-a prob-
lem of fundamental importance in nucﬁeér effects calculations. The equa-
tion whose solution prescribes the steady-state, neutral-particle distri-
bution in the phase space of position, particle direction, and particle
energy is the Boltzmann transport equation. This equation is a linear
form of the Boltzmann equation used in several fields of physics and is

a statement of particle conservation as applied to an infinitesimal ele-

ment of volume, direction and energy, and may be written as

J‘L-VI(F,A&) +c';'(ije/ __‘Eu‘,;\,e,r = SC"‘,;L,E) + (1.1)
ao
fde[d&'o;(ﬁi'-:&E%E)I(?,ﬁIE'/
where o #
n

F = the spatial position vector, in units of distance,

E = the particle energy,

A = a unit vector in the direction of particle motion,

VY = the gradient operator

S#R,e) = the particle source density, in particles/unit volume/unit
energy,

$(#iz) = the angular particle fluence, in particles/unit area/
steradian/unit energy,

O.(fe) = the macroscopic total interaction cross section at posi-
tion ¥ and for energy E, per unit distance, per unit
energy,

G; (7, A%A,e+e) = the macroscopic differential scattering cross section

at position'? for a particle of direction A" with enerqy

= ity 7 - o S
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E'scattering to a direction;ﬁ. and energy E. The units

are per unit distance per steradian per unit energy.

Analytical solutions to this equgtjon occur in only special Eases
where simplifying assumptions can be ;pp1ied (Reference 1). Unfortunately,
these assumptions do not generate a realistic scenario for performing
nuclear effects calculations, thus requiring the use of numerical methods
in these types of transport problems.

The scenario most used in performing nuclear effects calculations
is a nuclear air burst detonation. Analytically this scenario is ﬁdﬁe1ed
by a two-dimensional cylindrical geometry (azimuthal symmetry assumed)
composed of air with an exponentially varying density over a flat ground.
This type of configuration is referred to as air-over-ground geometry.
In this type of configuration, there is an interface at the air-ground
boundary across which a discontinuous change in density occurs. The
importance of including the ground was demonstrated by Straker (Ref. 2)
who showed a significant effect on the atmospheric neutron distribution
due to the presence of this relatively high density medium.

The conservative form of the Boltzmann transport equation for the

selected cylindrical geometry can be written as

=&t costx) e FTezie) L Usnoi-ul ez ieE))
€ de e RS

+ M “.1._.5_/'- ) + oye2,6) Teer,AE)

- -
Scezi,e) +j de'fd&‘ G le AR, EE) $ie2,Ale") (1.2)
? 4qn
where
€ = the distance in the radial spatial direction

"
(]

the distance in the axial spatial direction
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direction cosine with respect to the Z-axis

azimuthal angle describing particle direction
Figure 1 describes tt.\‘e‘ coordinate relation betweene , % ,A,X.

In Eq. (1.2) the energy dependeh;€~of the angular particle fluence
is represented as a continuous function. 1In practice the energy variable
js divided into a number of finite, discrete energy groups. This discre-
tization of the energy variable is known as the multigroup method (Ref. 1)
and is used to derive the set of multigroup transport equations by inter-
grating Eq. (1.2) over each discrete energy group. Applying the miltigroup
method to Eq. (1.2) yields

VI cost) (e Fiend) _ 1
3 CXS ¢

3 .
+ M a—%‘f—‘-ﬁl + G et e Al =

9 (sinex) Ji= w3 !3;1 A))
oX

& e ) -
Sgce,z,ii) + 9§ fdzt' o;’*( 6,2,A»R) Fer ) (1.3)
T YHn

where

9
G

the energy group designator, g=1 being highest energy group

total number of energy groups

I’(c,g,;{) = the angular particle fluence for energy group g, and

o;""(%,z,f\'-k) the macroscopic differential scattering cross section
at position (@, 2) for a particle of direction (u', x)
in energy group g' scattering to a direction (g, X) and
to energy group g.

To complete the specification of this analytical problem, boundary
conditions must be assigned to Eq. (1.3). One boundary condition often

used is referred to as a vacuum boundary condition and is represented as

ame mevr




SPATIAL COORDINATE SYSTEM (FINITE CYLINDER)

Fig 1. Coordinate Systems Used In Neutral Particle Transport
Problems For 2-D Cylindrical Geometry




Iscg,,/u = O |, AR <O (1.4)
where
a} = the position vector representing a spatial location on an
exterior surface -
A = a unit vector normal to the exterior surface located at Tev

The second boundary condition is applied along the axis of the cylinder
at 6>=0 and is referred to as the symmetry or reflective boundary condi-

tion. This boundary condition can be written as

e

g - 9 .
$ (o2, A) = I (o, 2 A (1.5)
where _A’ is defined by A’ =-A-A , and(AxA ). n = O

A nuclear burst is represented as an isotropic point source in the
atmosphere. In the cylindrical air-over-ground geometry the isotropic
point source is located along the axis of the cylinder (f>=0) at the
desired burst altitude (ZB). Mathematically this point source can be

represented as

599 Sca-20)dce)

g 47 (1.6)
. where

b 9

ﬂ .S; = jsotropic source in group g

\3 Stz-z,)¥Sce) = Dirac delta function

;J During the course of this dissertation it became necessary to define

'

another source term known as the first-scatter source. This source can

be expressed as

9 -
59 039-? P,Z,Ao"/ll e .
by l#-gl (1.7)

where
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Ts = position vector of the nuclear burst _
F = position vector in spatial domain
;L. = direction vector aligned with the #-%4 vector at the spatial ﬂ
.. !
position T. ‘
kg " . P
A = 0}’(:}'0:/1,)0(: along the ray defined by np» ,;,—_;',
(-] )

See Fig. 2 for a clarification of the above definitions. The reason for
using the first-scatter source will be explained in latter chapters.
Combining the previously derived results leads to the following

form of the Boltzmann transport equation:

LI cosext (e fezc.z,a}l — 1 Alsmeauli=u? f’(ci.a.‘ll
e o de e X
n 3 e ez A) =

Y . n ] .
» (-] 4 -~y
“n [F-R I * .Z-[dt‘ du' & tep Ava L cen i)
e 4 (1.8)

The sum over energy groups has been terminated at g because scatter
occurs only from higher to equal or lower energies.

The most common techniques used to solve the Boltzmann equation for
the air-over-ground problem are Monte Carlo, discrete ordinates, and Mass
Integral Scaling (MIS). Each method is deficient in some respect. Monte
Carlo demands a substantial amount of computational time due to its
statistical nature (Ref. 3). Discrete ordinates (Refs. 4 and 5) is
susceptible to a computational anomaly called the ray effect. All attempts
to eliminate or mitigate this computation anomaly in the discrete ordi-
nates method have resulted in a substantial increase in computational

time (Refs. 6-12), MIS (Refs. 13-15) cannot provide accurate results




s = COS ¢
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e A
0 5 - 0
(0.2g) BURST POINT p D 1
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50- STREAMING DIRECTION AT (5,2)
Q = PARTICLE DIRECTION

Fig 2. First Scatter Source Coordinate System Definition




near the air-ground interface at slant ranges less than 1000 feet. The

e ) BN e e et
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deficiencies exhibited by these commonly used solution techniques

motivated several new approaches for solving transport problems.

Even-Parity Equation and Space Angle ginthesis

hiaAd

In 1961 Viadimirov (Ref. 16) derived a self-adjoint form of the
Boltzmann transport equation known as the second-order even-parity flu-
ence form (EPFBE). The monoenergetic form of this equation can be repre-

sented as

"

A v K, A v Yirar s Gyerar=-A v K S + SR A

(1.9)
where all previous def;initions apply and the following are presented
Y = E‘(I(:,an'&r,-m) (even-parity fluence) (1.10)
SP_ = 'é (5(?,&/-5(6-51) (odd-parity source) (1.11)
53 = E|{5<F,/t)+5(?,-£)) (even-parity source) (1.12)

The two operators Ku and G_ are positive definite and self-adjoint (Ref.

g
17) and can be represented as

|
K“'F(/U = G (F) ( fia -+ /o;m(#/“x‘-zi)'ﬂ/i'lalﬁ.’) (1.13)

4n ‘

63 ‘F(/U = OL(F) ‘F(/‘u - f Cig (F,A'R) ‘F(A'lali‘ (1.14)

“n
where
2 “,
G;“(i’lﬁ."/-\)=g“ o.r,;,’i_ﬁ,;i‘;, ALY (1.15)

o-l"(;; = odd Legendre coefficients
') = Lth order Legendre polynomial
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G}glr‘,/‘\'-/‘ua“z‘(03(?/“1'-&}*-%(?,/1'--/‘\)) o (e

(even-parity differential ;;attering cross section)

The vacuum boundary condition becomes
Ye#a+ K“(S“(F:A) ~avYira): O
for ¥ on the vacuum surface and A-n< O
For the reflective boundary condition
Y a) = YR il

where r is on the reflective boundary and _A’ is defined by n-A'=2AA
and(AxA)-A= O . The derivation.of Eq. (1.9), Eq. (1.13) and the
boundary condition is presented in Appendices A and B respectively.

In conjunction with this self-adjoint form, a functional was
derived whose Euler equation is the even-parity fluence equation (Ref.
17). Kaplan and Davis (Ref. 18) used this functional to solve a simple
monoenergetic Milne problem with isotropic scatter. They derived a
coupled set of differential equations that represented the Euler equa-

tions of the functional for the various regions of the spatial domain.

This set of equations was solved by finite difference methods. The

angular dependence of the neutron distribution in their problem was

represented by trial functions obtained from an intuitive knowledge

of the true solution. The use of such predetermined functions is i

known as flux synthesis (Refs. 19-22) and provides a method of intro-

ducing a priori knowledge of the particle distribution into the trial ‘
- solution. This a priori knowledge may come from experience, subsidiary

calculations, or intuition.




S

2 Further success of the flux synthesis technique was achieved by

ﬁ Roberds and Bridgman- {Ref. 23) who applied the flux synthesis method 1
% to an air-over-ground problem using.a-weighted residual formulation of L
§ the Boltzmann transport equation. Thé{r results were within ten percent i
g of those generated by discrete ordinates and reduced the computational

g time by a factor of seven. Also significant is the fact that their

H

results had no ray effects, since the chosen synthesis functions changed

e

the angular mesh at each spatial point and thus did not allow any specific

PRAT B4 T 1P

rays to penetrate the entire spatial domain.

sy

Miller, Lewis, and Rossow (Refs. 24 and 25) applied the even-

f S

parity fluence functional with a finite element trial solution in space

VY Y

X

and angle to solve both a one and two-dimensional monoenergetic neutron

transport problem in plane geometry. In the 2-D problem isotropic

W WL

sources and scattering were used. From these solutions, the authors

concluded that the finite element method could produce results with a

computational time savings that were comparably accurate to discrete

T ——p

P N YA

ordinates results. Also, as in the case of synthesis functions,

finite elements used with the EPFBE are not subject to ray effects. A

finite element method has been incorporated into a production computer

code called TRIPLET (Ref. 26). This code uses the finite element method

4 w v ow— e Ty o s
P GRESAN UP Y NN S RN

to represent only the spatial variation of the neutron distribution
in the first-order Boltzmann equation. The angular variation is repre-

sented by discrete ordinates and thus this code is subject to ray

——

effects.

In 1974 Kaper, Leaf, and Lindeman published a study (Ref. 27) which

evaluates several finite element methods for solving the multigroup




neutron transport equation using the variational form of the even-parity
equation. Their final conclusions were unfavorable and lead to the
recommendation that "the use of high grder approximation procedurés,
based on finite element methods and ;ppTied to the self-adjoint form of
the transport equation does not provide a viable alternative to the use
of the discrete ordinates methods, applied in combination with either

finite differences or finite element methods to the standard form of the

transport equation."
These authors made this conclusion based on their experience {h’solv-

ing reactor type problems. In this problem ray effects do not occur and
: thus would not have influenced the quoted conclusion. In the air-over-
ground problem the ray effect is predominant and the elimination of this
effect from a transport solution is important. Though the EPFBE is appli-
cable for use in both types of transport problems, its value in mitigating
% or eliminating the ray effect is most pronounced in an air-over-ground
: problem. Kaper, Leaf, and Lindeman's conclusion does not apply to trans-
port probiems that exhibit the ray effect.

In 1975 Briggs, Miller, and Lewis (Ref. 28) did an extensive theoret-
jcal study to determine the reasons behind the ray effect eliminating
property of the EPFBE. Their approach was to solve the self-adjoint
f - form of the Boltzmann equation cast in a variational formulation using
X three different angular representations. One angular formulation was
J the standard discrete ordinates treatment of the angular domain. The
{ other two formulations incorporated either piecewise constant or piece- 1
wise bilinear finite elements as angular trial functions. Solutions

obtained from these various formulations demonstrated that both finite

1"




element angular representations eliminated ray effects, while the dis-
crete ordinates treatment of the angular variable did not. To explain
their computational results Briggs,.et'gl, demonstrated that the
operator of the self-adjoint form of tﬁe Boltzmann equation changed
from a hyperbolic to an elliptic form when the finite element angular
representation replaced the discrete ordinatgs treatment. This change
was synonymous with the disappearénce of the characteristic lines along
the discrete ordinates directions of neutron travel and was equivailent
to introducing into the streaming operators fictitious derivatives
normal to these lines.(Ref. 29). These derivatives result from the
averaging of the transport operatof over the solid angle support of the
finite element basis functions. This averaging allows a coupling of
angular directions not present in the discrete ordinates method and
eliminates the ray effect from transport solutions.

Purpose of the Research

The second order even-parity form of the Boltzmann transport equa-
tion offered a sound theoretical basis for eliminating the ray effect.
However, a method based on this equation is much more difficult to pro-
gram than the discrete ordinates method and requires the added expense
of evaluating many integrals. Previous applications of this equation
had been limited to one dimensional problems with linear anisotropic
scatter and two-dimensional plane geometry with only isotropic scatter.
Extending the use of this equation to two-dimensional cylindrical geom-
etry with anisotropic scatter represented a significant departure from
past work. The purpose of this research was to determine the feasibility
of eliminating the ray effect when solving the air-over-ground problem by

using the EPFBE.




In Chapter II the Galerkin method is applied to the weak form of

the EPFBE. Both a finite element and synthesis trial solution were used.
The finite element tr%é] solution was a tensor product consistihg ;f
bilinear Lagrange polynomials. The s}nthesis trial solution used bi-
linear Lagrange polynomials to represent the spatial variation of the
neutron fluence and a ellipsoidal synthesis function expansion to
approximate the angular dependence. The results of this chapter demon-
strate that neither the Galerkin or Ritz method would provide a feasible
means of solving the air-over-ground problem since the resulting infe-
grals cannot be efficiently evaluated either numerically or analytically.

In Chapter III the collocation method is applied to the EPFBE. A
trial solution consisting of cubic splines and specially derived angular
synthesis functions were used. This method allowed the analytic integra-
tion of the resulting integrals, but introduced a numerical deficiency
associated with the odd-parity fluence transformation. This deficiency
is related to the requirement that the derivatives with respect to all
phase space variables of the selected trial solution contain the neces-
sary information to accurately represent the anisotropic portion of the
Boltzmann fluence.

In Chapter IV the problems that result from applying a multigroup
method to the EPFBE are outlined. These problems center on the odd-parity
source term and the dependence of this term on the odd-parity fluence.
The nested integrals that result are complex and their evaluation would
lead to problems similar to those encountered in Chapter II.

Chapter V presents recommendations and conclusions.
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II. Weak Form Equation and Galerkin Method

Introduction

In this chapter the weak form qf.the EPFBE is formulated for the air-
over-ground problem using the Galerkin method. Evaluation of the integrals
that result from this method is attempted using both analytical and numer-
ical integration techniques. Trial solutions consisting of linear Lagrange
polynomials in space and a specially derived synthesis function in angle
are used to approximate the even-parity fluence. Different combinq?ions
of the above integration techniques and trial solutions are attempted.
The results demonstrate that the Galerkin and Ritz methods introduce too
much complexity to eff%cient]y assemble a global matrix representation
of the EPFBE for an air-over-ground problem. This statement applies in
general to the Lagrange polynomial trial solution and specifically to

the synthesis trial solution.

Weak Form and Functional Representations

The Galerkin and Ritz methods are commonly used in the finite ele-
ment method. The Galerkin method is applied to the weak form of an equa-

tion. The weak form of the EPFBE can be represented as (see Appendix C)

): £<‘A'V€(ﬁ;\)l K, (A-vViza)os cerin Gy Yradd df = (2.1)

J:[aam, K, Sut410% <e<aa;,33<aa)>]d:-[< ERA)L YRR AR oS

where &(FAJ) is referred to as a weight function. V represents the
spatial domain, S, 1is the part of the surface bounding the spatial domain

on which the vacuum boundary condition is applied, and

<a(r‘,/1),b(r‘,/i1>=[a(F?&)bcEzi/c(/i (2.2)
‘o
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3 The Ritz method is applied to a functional that represents an equation.

K For the EPFBE a functional representat1on ex1sts and can be written as

‘.A ! gn \/, \}’ mnea Y.Q,— ) LX}

- F [ Vci‘,/ilj =< GFICAV (',A)J 'O"(r) ‘fc Al-TerR) a;,l‘)nv\) GA')dR (2.3)
yl *Z‘A v‘fé"'\)}/q}“(ﬁ: 'ﬁ'v'f}( ""'Z "J(fn.}\s (l',fl)

2 "o‘-,zTﬁ “o‘l,{)[/i‘-v Vo) - Z[A V%ML}/O}M*"'\/S(“')"/”

I

+ 2«4 Y"(r,n.)))y

-, where

y a(fA,= [vdr*fq"acﬁxld&‘ (2.8)
K< athA) D= | dE | (An) athA)oli (2.5)
3 7 S, “An>0

The solutions to Egqs. (2.1) and (2.3) naturally satisfy the vacuum boundary
;: condition. The reflective boundary condition is essential for both equa-
: tions and must be imposed.

If the same trial solution is used in solving the EPFBE, the Ritz
and Galerkin methods generate an identical set of simultaneous algebraic
equations. This occurs because the K, and Gg operators in this equation
are both positive definite and self-adjoint. The Galerkin method was
selected for use in this chapter, because it represented a convenient
starting point for determining the feasibility of applying the finite
element method to the EPFBE.

Galerkin Method

, The Galerkin method falls under the broader category of weighted
residual methods. These methods assume that the exact solution of a

} differential equation is not known and must be approximated, thus intro- ?

3 ducing into the equation an error called the residual. The weighted

residual method requires this residual to vanish in some average sense

15
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over the domain of definition of the dependent variable. As an example

- consider a function ¢¢x) defined over some domain D dependent on_the

variables represented by the vector X... Let the behavior of @(¥] in

D be given by

g L ¢ez) = fez) (2.6) i

% where F#) is a known function of the same independent variables. Eq.

i (2.6) can be rearranged to give

L d@)- )= O (2.7)

Since @(&®) is not known, an approximate solution must be used. Let the
approximate solution be represented by $Ci} . Substituting ¢(¥/) into
Eq. (2.7) yields

’ L da)-Ffn # 0 (2.8)

or stated in another manner

L di- fx = Rez) (2.9)

R¢i) is called the residual and results from the use of the approximate
solution ®®) Multiplying Eq. (2.9) by the weight function €() and

integrating over the domain D results in '

fo {-L&?) - ‘f(i‘)] &) d;‘(=foR(,z) &) (2.10)

T i i 8
e A L e e o e
[EpeRtem—

¢(¢) is often represented by a linear combination of a linearly inde- ’

pendent set of known functions:
M

fﬁ('x‘) = Z, a; Q; () (2.11)
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In Eq. (2.11) the a 's are the constant coefficients and the Q 's repre-
sent . .e known functions. Eq. (2.11) is called a trial solution. Insert-

ing Eq (2.11) into Eq. (2.10) gives ..

y E L ZM a, Q- foorJec oz =chf;cc§)o(i‘ (2.12)
D [E 3] 0

Requiring that the weighted residual vanish (Ref. 30) yields
f Repreiad = O. (2.13)
o)

Eq. (2.13) implies that the weighted residual method determines a set of

a coefficients that requires the residual function to be orthogonal to

the weight function and thus forces the residual to vanish in an integral

or average sense. The final form of the weighted residual method is

f {L i aéQici; - ﬁ?}] e dz = O
D =1

If the weight function is allowed to be any linear combination of the

same known function as the trial solution, i.e.
N ™~

ex) = 2 b Qo (2.14)

J!

then the Galerkin method is defined and requires

X{L Zm a; Q;('i%{(?/‘) leilo(? = O, =12, M (2.15)

Transport problems are normally of such complexity that an analytical
solution is not possible. These problems necessitate the use of a trial
solution that describes both the spatial and angular variation of the
neutron fluence. Such a trial solution for the even-parity fluence can

be presented as

17
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where S}(’l represents a known function to approximate the spatial
variation and lij(k) plays a similar fdle for the angular dependence.
If the Galerkin method is used with the trial solution in Eq. (2.16),

then the proper form of the weight function is

N M
EF A= 2 2 by S,0#) AR (2.17)

L A0 ]

-
-

Substituting Eqs. (2.16) and (2.17) into the weak form of the EPFBE,
Eq. (2.1), yields

:éflif ag;

Cat Jal J

> (2.18)
f[((-/t-v S FIALR), Ko A9 S;07) Ajtar> +

{ S r1AR), Gy S‘-c:JAJ-m»)dm l(S,‘(r)A,_m, Sir AJ-m;/a-Alm‘}

= fv[Sx“’AJ"’, K, S, (a1 + LS, *1A 4, 5_.,t»‘,»t/>] dr
for K= 1,2 .-- N
rgf' L = {, 2, s, M

Eq. (2.18) is referred to as the Galerkin weak form equation throughout
the remainder of this dissertation.

Numerical Integration

The trial solution initially used with Eq. (2.18) consisted of
precewise bilinear Lagrange polynomials to approximate both the spatial
and angular variation of the fluence. These polynomials have only Co
continuity (continuity of the function only). This degree of continuity

is all that is required since the highest derivative in the Galerkin

18




weak form equation equals one (Ref 31). In any given element, the form

of these polynomials-is given by

Licxyr = @ xysbhxrcy+d; (2.19)

where the i subscript refers to a particular node in the discretized
domain consisting of rectangular elements. Since four nodal degrees of
freedom exist in each rectangular element, the coefficients in Eq. (2.19)
can be determined. These coefficients satisfy the requirements that at
one node L;¢x.y) equals one and at the other three the polynomia1.is
zero. These constraints lead to the classic tent function illustrated
in Fig. 3. The same ﬁfocedure is followed in determining the other tent
functions for the remaining nodes in the rectangular element and also
the remaining elements in the mesh. This procedure is given in more
detail in Appendix D.

The Lagrange polynomials representing the spatial and angular varia-
tion of the fluence are combined using a tensor product. In this tensor
product, the spatial and angular dependence of the fluence is assumed
separable in a manner similar to the P, method (Ref. 1). Using the Galerkin
method with this bilinear Lagrange polynomial tenscr product trial solution,
one defines the following representations for the even-parity fluence and

weight function respectively:

M N
‘Fc#,{; 3 Z ,,Z ag L.c# I.J-(a) (2.20)

£ be Lol cr) (2.21)

PN

N
)= 2
ey

.

-

where M represents the total number of spatial nodes and N the number

of angular nodes.
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Fig 3. Tent Function Defined Over Four Rectangular Elements




The trial solution presented in Eq. (2.20) was used (Ref. 26) to
find the solution of a monoenergetic transport problem invo]ving.gwo-dimen-
sional plane geometry and isotropic ggatter. The success of this appli-
cation depended in part on the simpfidity that the isotropic scatter
assumption introduced. Scattering from one angular direction to another
is represented in the first order Boltzmann equation by the differential
scattering cross section oy(F, A'A) for scattering from A to A
The differential scattering cross section is normally approximated by an

expansion in terms of Legendre polynomials, i.e.

P
2 gy Rea=a (2.22)

Cs(FAA) = &

where P, is the £ order Legendre polynomial, O5¢ 1is a spatially
dependent coefficient, and p represents the order of the approximation.
In the case of isotropic media the A=A variable is replaced with M¢
which represents the cosine of the angle between A’ and A and is

expressed as

M¢ = U./.L’-'-\( = 1% \/l‘u'? cos (x-x) (2.23)

For the EPFBE the defini;ion presented in Eq. (1.15) and (1.16) leads to
Csq (7 uy) = > Txa (Pl Fy (uay) (2.24)

R=even

P
S (P - c%;sjz — P (2.25)
. (F ) E L) = O5q(F) o (sse)

The assumption of isotropic scattering reduces the complexity of Eq. (2.24)

and (2.25) to

O3y (F tg) = 3¢ (F) (2.26)




ColFfiu)= O (2.27)

In an air-over-ground problem, the differential scattering cross sec-
tion is expressed as a third order Legendre expansion (P=3). The
introduction of anisotropic scattering significantly complicates Eq. (2.18)
and the process of reducing this equation to a matrix form. The complica-

tion that occurs in the G, and Ku‘operators can be seen by com..ring the

9
isotropic scattering case with an anisotropic representation. Combjning
the definition of these operators presented in Eqs. (1.13) and (1.14) with
the isotropic scatter results of Eqs. (2.26) and (2.27), leads to the

following representation of these operators in Eq. (2.1):

Gg YRR = 6;(F) \)Uc?,,:) - o;,m["‘f’(:;,;-; AR’ (2.28)
]

k /":'VVJ(F:/{‘) = o) [,{v‘f’(;}',‘i)] (2.29

;4 7 )

Eqs. (2.28) and (2.29) demonstrate two simplifications that result from
the isotropic scatter assumption. The first is the absense of the
integral term in the K, operators, since 0;“0‘. Me)= O | The second is
the simple form of the integral in the Gg term that results from the F,
Legendre polynomial equaling one. Using the trial solution of Eq. (2.20),
this global integral becomes an evaluation of the bilinear Lagrange poly-
nomials over the angular domain. Since these polynomials are identically
defined over each angular element, the integral can be evaluated using

the results of a single canonical element evaluation. The value of this

integral for any angular element can be found by simply multiplying the

area of the angular element by the canonical result. (See Appendix E

for more detail.) If a more precise value is necessary, only the single




canonical evaluation must be repeated. This simple procedure is possible
k- | due to the definition.of this integral.

1 The integrals resulting from both.the G, and K, operators couple all

g
scattering directions in the angular domain and thus must be evaluated
over all angular finite elements. This global definition is contrary
to the other integrals resulting from the definition of the weak form ﬁ
equation. These integrals are defined locally over a single spatial

and angular finite element and during the assembly of the global matrix

4 -

are evaluated over a single element at a time. The difference between

a local and global definition can be clarified by examining the term in

ff Eq (2.1) that contains the Gg operator.
Lfﬁ(ﬁfu E-o-r(F) ‘Vu‘,,t)—/osgutu.; Wtr‘,&')dz‘u]d: (2.30)
F 4
4n

To determine the value of one element in the global matrix, the two outer
integrals of Eq. (2.30) are evaluated over a few spatial and angular
finite elements. For the same single value the inner integral must be

q evaluated over the entire angular domain. Since the neutron fluence is

| highly anisotropic near the source in an air-over-ground problem the
angular domain requires a refined discretization to accurately approximate
this type of distribution. Thus evaluating the global integrals result-
ing from the Ku and Gg operator could be quite costly, if the definition
of the integrand prohibited the effective use of canonical integration.

Such is the case, when an anisotropic scattering process is used.

e e b Bt s £

The Gg and K, operators take within Eq. (2.1) the following forms

in the anisotropic case:

Gg Yz A = c,m‘Ham-fo,sm,,x-.m‘H:,A';a(,i' (2.31)

B ik
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K A Hea = o';_(;‘-) (ﬁ-v‘f’cafu*fo;“(ﬁ,tfmi'- vV#Adi ) (2.32)
. 4n
The degree by which these forms deviaté from the isotropic case depends
on the order of the even and odd-parity differential scattering cross
sections. To illustrate the complications introduced by anisotropic
scattering in these terms, assume a first order scattering representation
involving the P0 and P] terms of the Legendre expansion. This order of
scattering approximation does not alter the definition of the Gg tegm
presented in Eq. (2.28), but does add the integral term to the K, opera-
tor, i.e. ‘

1 Co
K“;\.V‘H,a‘,u: G(Fi (A'V%ERI*O;,(FI E(u,;ﬁ’-v‘f’(r‘,fwdr‘\') (2.33)

4n

Substituting the definition of w4 into Eq. (2.33) results in the follow-

ing formulation for the global integral term.

I(;';;_): O;, () (E'{M’ﬁ'-vwciﬂ'ldx'o(;" + (2.38)
\]‘.‘T‘}F’LL\JT-—Fcos(x- x1A- oY A dx'd,u.')

The two integrals in Eq. (2.34) are considerably more complex than those

resulting from the Gg operator due to the presence of the gradient term.

The increased complexity of these integrands affect the order of quadra-

ture needed to accurately evaluate them and thus the computational time

required. Another significant deviation from the isotropic case is the

presence of JVi-u T  and cos(x-x') within these integrands. These func-

tions cause the integrand to be defined differently in each angular

finite eiement, thus altering the basic premise that allowed the efficient

evaluation of the integral in the isotropic case. The presence of these

functions in the integrand now force the global integral to be evaluated

over each angular finite element, rather than a single canonical element.
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Since this global evaluation must be repeated for each angular quadrature !

point, the expense of .forming a global matrix representing the Galerkin
weak form equation is greatly 1ncrea§pd.

The problems demonstrated with a Pi anisotropic scattering representa-
tion for the Ku operator become more severe with a P3 representation and
spread to the global integral term of the Gg operator. This Gg operator
is affected by the P2 term of the Legendre expansion that introduces
Ji-@? and €os(x-x'/to the integrand of this integral. The Leggqgre
expansion of the angular scattering significantly increases the com-
plexity of an anisotropic scattering problem compared to an isotropic
scattering problem. fﬁis complexity is primarily concentrated in the J
global integrals resulting from the Gg and Ku operators.

A modified computer code (Ref. 32) was used to determine the exact
effect anisotropic scattering had on computer execution time and accuracy.
This code assembled the global matrix resulting from the Galerkin weak
form equation Eq. (2.18) using a bilinear Lagrange tensor product trial
solution. The evaluation of all integrals resulting from this equation

was performed during assembly using numerical integration. This integra-

tion was carried out over a canonical representation of the spatial and

angular elements. A flow diagram of this code appears in Appendix H. 7
The problem selected to examine the effect of anisotropic scattering é

was a simple air burst problem. The spatial domain consisted only of air

and was discretized into a single rectangular finite element extending

from 0 to 100 meters in both the e and £ directions. The angular domain

was zoned into a single rectangular finite element with the u variable

extending from O to 1 and X from 0 to7r. The symmetry of the even-parity
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fluence allowed this .reduced angular domain. A1l cross sections were
taken from the first energy group of the DLC-31 set generated by the
Radiation Shielding Information Center; Oak Ridge, Tennessee (Ref. 34).
The vacuum boundary condition was satisfied naturally on three boundaries
and the reflective boundary condition was enforced on the cylinder axis.

The global matrix resulting from the definition of this problem was

16 x 16.

Four problems were run on the CDC-6600 computer using this code.
These problems differed only in the order of the scattering approximation
and quadrature set uséd. The effect of increasing the order of the scat-
tering representation was measured by two parameters. One parameter was
the computational time required to compute and assemble a global matrix.
The second parameter was concerned with the sign of the eigenvalues related
to this matrix. The sign of all eigenvalues of a global matrix from the
Galerkin weak form equation should be positive. This results from the

positive definiteness of the Ku and G_ operators used in this equation.

g
A negative eigenvalue would indicate that the elements contained within

a global matrix were inaccurately computed. Since all computations in

the Galerkin weak form equation center around the evaluation of integrals,
this would indicate that the order of the quadrature set used was inadequate
and would need to be increased. Increasing the order of the quadrature
would increase the computational time required to assemble a global matrix.
Thus, it can be seen that the two evaluation parameters are related and

together indicate the relative efficiency of assembling an accurate global

matrix representation of the Galerkin weak form equation.
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The results of the four sample problems are presented in Fig. 4 and
substantiate the analysis previously presented. Problem one is analogous
to the analysis that used an 1sotropjp scattering representation. Here
a simple two point Gaussian quadrature §et was adequate to generate an
accurate global matrix. Problem two and three demonstrated the increasing
complexity that occurred as the order of the scatter approximation increased.
For both problems a two point Gaussian quadrature set was used. The
increased complexity was reflected in the number of negative eigeng{]ues
associated with the respective global matrices. Problem four was an
attempt to increase the order of the quadrature set for a P=1 scattering
approximation. This bfob]em demonstrated that changing the order of the
quadrature set substantially increased the computational time required
to generate a global matrix. This occurred because of the six nested
integrals that are contained in the Galerkin weak form equation. If
Eq. (2.33) is substituted into the first term of Eq. (2.1) the following

would result

fff fﬁ-vccaﬁ;gc;'Tm (A Heare I(F,‘R})D(zdedyd‘o (2.35)
€ wla ty

Eq. (2.35) clearly illustrates these nested integrals. Evaluating these
integrals requires 06 evaluations per matrix element, where Q represents
the number of quadrature points for each variable. For a two point quadra-
ture set 64 evaluations are needed per matrix element and four quadrature
points would require 4096 evaluations per element. Considering the 256
elements in the matrix the substantial increase in computational time is
not surprising.

The numerical integration procedure used in the computer code that

generated the results presented in Fig. 4 was not efficient. An analysis

27
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Order of Number of Number of Number of } Computational
Problem Scatter Quadrature Pts/} Positive Negative Time
Number [Approximation Independent Eigenvalues { Eigenvalues (Sec)
B Variable ..

1 p 2 16 p 38

2 1 2 10 6 4]

3 3 2 9 7 45

4 1 4 - ~—- >180

Fig 4. Results Using Galerkin Weak Form Equation
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of the second term in Eq. (2.35) demonstrated it could be separated into

S s Cn———enalll,

9 spatial and 27 angular integrals. The evaluation of these integrals
: using a four point quadrature set would require 576 evaluations per matrix
. element. Though the 576 evaluations fepresented a significant reduction
from the 4096 previously required, it still was not encugh reduction to

support the use of numerical integration.

Certain requirements of the air-over-ground problem oppose the cost
efficient implementation of a finite element solution technique using
numerical integration, This transport problem requires the use of a

third order Legendre expansion to approximate the scattering process.

This expansion used in the weak form of the EPFBE would significantly
increase the compliexity of the resulting integrals. As demonstrated in
Fig. 4, complex integrals require the use of higher order guadrature sets
to assure the positive definiteness of a global matrix. The air-over-
ground problem also requires a very finely zoned angular and spatial
domain. Such zoning intensifies the problems associated with evaluating
the globally defined angular integrals and increases the number of local ‘

element integrations that must be done. Since the angular integrals

resulting from the weak form of the EPFBE can not be efficiently evalu- ‘%

ated by canonical techniques, a computational cost inefficiency results.

The combined effect of high order quadrature sets and refined meshing
significantly offset even substantial gains made in improving the
efficiency of a numerical integration process. For this reason further
work based on a finite element method using numerical integration was
stopped and the use of analytical integration techniques were attempted.

i
{ The success of previous work using the EPFBE functional was based

on the jsotropic scattering assumption. This assumption automatically
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resolved all the problems that rendered either this formulation or the
weak form equation too complex for efficient numerical solution. -

? The numerical integration prob]gms encountered using the Galerkin
- weak form equation are not unique. Stfang and Fix (Ref. 33) devote an

2 entire section in a chapter entitled "Variational Crimes" to this problem.

In this section they theoretically discuss problems similar to those
< presented in this chapter and conclude that "it is very important to ;
F~ control properly the fraction of computer time spent on numerical igtegra- '
tion." As evidenced by the sample problems, the computer time necessary é
. to evaluate the integrals resulting from the Galerkin weak form equation
has not been properly Eontro]]ed.

Analytical Integration

A natural solution to the numerical integration problem was to
attempt the analytical evaluation of the integrals associated with the :
Galerkin weak form equation. This method of integration would alleviate ‘
both the accuracy problem and computational time problems met in the %
previous section. Analytical integration would be precise and reguire i
only a single function evaluation per finite element, instead of the !
many evailuations required by numerical integration. The structure of j
the integrals resulting from this equation were known to be complicated; %
X however, it was horz.J that the MACSYMA (Ref. 34) symbolic algebraic mani-

pulating system would provide the necessary simplification. Two differ-

ent trial solutions were used in attempting this analytical integration.
The first trial solution was the tensor product consisting of
bilinear Lagrange polynomials used in the previous section. The first

term on the right-hand side of Eq. (2.18) was input to the MACSYMA pro-

¥ B i
- . e oo

gram by defining the individual terms that composed it. As an example,

L
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the u¢ variable represented by Eq. (2.23) was defined in MACSYMA. Next

the P] and P3

the preceding two definitions the odd-parity differential scattering

Legendre polynomials were defined in terms of 44 . Using

cross section was constructed. The Lagfange polynomials representing

both the spatial and angular variation of the neutron fluence were next
defined, In the first term of the Galerkin weak form equation both the
weight function and trial solution is operated upon byA v . In cylin-

drical geometry this operator is defined as

=24 o ~A = HA
A9 [(*,4 - J‘“;a"c SCx) d(depﬂ IR /T {d(#c )n«cx:})’ (2.36)
{ AR
c} l}la

MACSYMA was programmed.to perform the operation defined in Eq. (2.36) on
both the previously defined weight function and trial solution. With i
all the individual components defined, MACSYMA assembled the first term !
of the Galerkin weak form equation,

Several different techniques were attempted to perform analytical
integration over the required six nested integrals. One attempt involved
integrating the whole assembled term. This attempt was only successful in
performing the two intermost integrations over the u' and x' variables.

Further integration was impossible, since the number of terms generated

by the successful integrations exceeded the memory capacity of MACSYMA,
This large number of terms developed because of the indefinite integration
1imits and the complex nature of the trigonometric functions that result
from the assembled term. The integration limits were arbitrarily set

so the dimensions of the finite elements in the angular and spatial domain
could be varied without repeating the work on MACSYMA, The use of these %J
arbitrary limits always generated two terms for each integration, since
an upper and Tower Timit evaluation was necessary. The complex trigono-

metric terms resulted from the product of those involved in Eq. (2.36)

3
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and the definition of ay . Integrals involving these terms required
reduction techniques for evaluation. These reduction techniques a!ways
generated several additional terms, The exact number of the terms was
dependent on the power of the exponeﬁt associated with the trigonometric
function,

To resolve the memory capacity problem, several different MACSYMA
functions that optimized the use of memory were tried. The use of these
functions did not solve the memory problem thus motivating the use of a
new approach. N

The previous approach attempted to evaluate the entire first tem
of the Galerkin weak form equation, while this new approach sought to
simplify the expression into a number of smaller less compiex terms. To
accomplish this goal a special MACSYMA function was written that auto-
matically searched the string of simplified terms to identify those that
have the same form of variable dependence. Once identified the coeffi-
cients of these terms were added together, thus reducing the total number
of terms requiring evaluation. Several attempts were made to implement
this approach and use this specially derived MACSYMA function. In all
cases memory capacity again was exceeded during the simplification process.
A careful examination of the first term of the Galerkin weak form equation
demonstrates this expression can be simplified into over 29,000 distinct
terms (see Appendix F)., MACSYMA does not have the capacity to generate
this number of terms and no successful means was found to generate only
a small portion of these terms at one time.

These two approaches failed for reasons similar to those found in
attempting numerical integration. Once again the complexity of the inte-

grands contributed to the failure of using the Galerkin weak form equation.
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The integral evaluation of these functions necessiated the use of reduction

formulas that required the use of significant amounts of memory ip'MACSYMA.

The nested integral problem also surfaced. In the analytical integration
attempt this problem manifested itself by taxing the 1imited memory

resources available to MACSYMA. Therefore, any means that would reduce

; the requirement for this memory would improve the chances of successfully

using this program,

X The space angle synthesis (SAS) method discussed in Chapter I Pffered
the possibility of reducing these memory requirements. The Lagrangé’poly-
nomial trial solution used in an air-over-ground problem requires sixteen
distinct terms. Subsfftuting a global synthesis function representation
for the angularly dependent Lagrange polynomials would condense the form '
of the trial solution. This reduction would result from replacing the

four terms of the bilinear Lagrange representation with a single term.

The choice of synthesis functions was influenced by the work of Roberds

and Bridgman (Ref. 23). These authors used an off-centered ellipsoidal

function to represent the angular variation of the neutron fluence in

an air-over-ground problem, The most significant feature of this
ellipsoidal function was its ability to be analytically integrated in
a weighted residual formulation of the first order Boltzmann equation.

Additionally, the effectiveness of this function was demonstrated by

accurately representing the angular variation of the neutron fluence and
generating ray effect free scalar fluence solutions.
The off-centered ellipsoidal function used by Roberds and Bridgman
needed modification for use in the Galerkin weak form equation. The ;
even-parity fluence as defined in Eq. (1.10) is an even function in the

angular variable. This property forces the ellipsoid to be centered.
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The expression for a centered ellipsoid, symmetric about the position

vector from the point-source to position (p,2 ) is (see Fig. 5)..

Ecir=b fﬂrﬁm (2.37)

where
E(A ) is the distance from (@.2/ to the ellipsoidal surface.
b denotes the length of the minor axis, fi;axl = the cosine of the angle

between R and the axis of revolution

-

f(lu.x) = Cosinl p + sm(ruJ 1=-pt cos(x) .
The n_ parameter is now a function of the (@.i ) coordinates, since it
is dependent on the spatial location. This dependence is defined in

the following manner:

_(e-C)
SIN) = J(o-palte(a- 2g)%

(2 -2p)
Vep-parie (-2

cos(n)

where the coordinates (fhzii ) represent the spatial location of the
point source of weapon radiation. In the air-over-ground problem .
since the point source is on the axis of the cylinder.

The angularly dependent part of the trial solution Eq. (2.20) was
modified to include these ellipsoidal synthesis functions. The trial
solution chosen replaced the angularly defined bilinear Lagrange poly-

nomials with a three term ellipsoidal expansion
™M

IR Zi a;J-&mEJ-m; (2.38)

=gt

where .Sg#)is still the spatially defined bilinear Lagrange polynomials.

The three ellipsoidal functions were chosen to represent the expected




Fig 5. Ellipsoidal Synthesis Function
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spectrum of angular variation that would exist for an air-over-ground

problem (see Fig. 6).- E,(Al was chosen to represent the extremely

anisotropic nature of the angular fluence near the point source. E;(A.)

’

oSy

represented the isotropic nature of tﬁé angular fluence at large distances

from the source. E;tﬁl was chosen to act as a transitional shape

¥
v 4

between the two others. The b parameter in Eq. (2.37) determined these

shapes. The mixing of these shapes is accomplished by the coefficients.

T, WY 10

The value of these coefficients is determined by solving the alooal

- "

- matrix representing the weak form of the even-parity equation.
Analytical integration of these ellipsoidal synthesis functions
| in the weak form of the even-parity equation was not possible. This

g can be illustrated by examining the simplest term in Eq. (2.1).

L < C(Rﬁl,cg“l’cr‘.ao o (2.39)

Substituting Eq. (2.38) and the proper definition of gc®A) for the

Galerkin method results in:

)< S Ea), Gy (Ser1Ejeri) > el (2.40)

M
™
?

for K2 1ono, M
L=s1,23

If isotropic scatter is assumed the following angular integral would

result from Eq. (2.40)
f E.ci) Euoa (2.41)
Yn 4

e e Do e b

By substituting Eq. (2.37) into the above, the following results:

Y e

JIRSaPE———.
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Fig 6. Representative Angular Fluence Shapes (Polar Plots)
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l)‘_ LJ. [‘m»/—_l-(bl"l) Fpoxs 1= C6F =17 Fugus dr (2.42)

Eq. (2.42) could not be analytically integrated by the MACSYMA program.

The weighted residual technique abb]ied to the first order Boltamann
equation by Roberds and Bridgman never produced a multipiication of two
ellipsoidal functions. This multiplication occurred because the Galerkin
method was used.

Numerical integration of the ellipsoidal trial function was also
attempted. The computer program previously described was modified to
replace the bilinear Lagrange polynomials defined over the angular
domain with the e]lipsﬁida] functions. A1l derivatives of this function
needed for an evaluation of the Galerkin weak form equation were analyti-
cally calculated and formulated in FORTRAN by MACSYMA. Sample problems
using this modified code demonstrated the need for high order quadrature
sets to accurately evaluate the resulting integrals and thus properly
define the global matrix. As before, the use of these higher order quadra-
ture sets made the computational time necessary to evaluate one spatial
finite element prohibitive for an air-over-ground problem.

Further efforts to use the Galerkin weak form equation to obtain
solutions to an air-over-ground problem were not attempted. The complexity
of this equation formulated for this problem had been demonstrated.
Neither numerical nor analytical integration could efficiently form an
accurately defined global matrix representation.

The next logical step in attempting to generate a solution to the
EPFBE was to use a less complex numerical method. The numerical method

selected was collocation as described in the next chapter.
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II1I. Collocation Method

Criteria _

The results obtained from the ptqvious chapter identified two criteria
that must be met to successfully gen;réte a global matrix representation
of the EPFBE for an air-over-ground problem. The first criterion is to
use a numerical method that allows the efficient computation of this
matrix. The Galerkin method failed this criterion by requiring the use A

of a weight function that significantly added to the compliexity. Addi- |

P4

tionally this method generated the nested integrals that contributed
to the problems in attempting both analytical and numerical integration.
The second criterion is to use a trial solution that is simply defined
and analytically integrable. The bilinear Lagrange polynomials were .’
simple in form; however, they expanded the number of distinct terms in
the Galerkin weak form equation beyond the memory requirements available
in MACSYMA. The ellipsoidal angular synthesis function had only one
term but proved not analytically integrable. Also the complexity of
this synthesis function prohibited the efficient use of numerical
integration, since high order quadrature sets were needed for accurate
evaluation.
The main purposes of this chapter are to present a numerical method
that satisfies the first criterion, to develop a trial solution that ‘
meets the requirements of the second criterion, and to identify the
problems that result from applying this combination to an air-over-ground
problem.

The numerical technique chosen is the collocation method. This ;

method was selected after reviewing the work of Houstis, Lynch, Rice,
and Papatheodorou (Ref. 35). These authors generated solutions to seven-

teen different elliptic partial differential equations using the numerical
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methods of finite differences, collocation, least squares, and Galerkin.

The purpose of this paper was to compare the efficiency and accuracy of
these numerical methods. This research indicated that the collocation
method offered an efficient and accurafe alternative to the other three
techniques. Additionally, this work demonstrated the ability of the col-
location method to produce a more simplified formulation than the Galerkin
method. The successes reported in this paper motivated the idea of
developing a numerical method based on collocation for solving thg’gPFBE.
To insure that this attempt did not violate the second criterion, a
special trial solution, derived using the concept of space-angle-synthesis,
was used. ‘

This combination of trial solution and numerical method allowed the
successful approximation of the EPFBE. The simplicity of the trial
solution allowed all integrals in this formulation to be analytically
evaluated on MACSYMA. Attempts at solving the air-over-ground problem
demonstrated a numerical problem associated with the definition of the
odd-parity fluence. The severity of this problem eliminated the use
of the collocation method for solving the EPFBE when a standard finite
element or combination finite element synthesis trial solution was used.

Collocation Method and Trial Solution

Collocation is classified as a weighted residual method. In the
previous chapter a derivation was presented to illustrate the weighted
residual method. hfrom this derivation the following egquation resulted.

L g L ?: a;Q;ti’)~ ‘Fci)]{(i/c(? = O (3.1)
The difference between the collocation method and Galerkin method is in
the definition of the weight function, £¢X/. As previously demonstrated

this weight function is defined in the following manner for the Galerkin

method.
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EGD = ;&pi (3.2)

For the collocation method the weight:function is defined as

()= S¢R-%,) (3.3)

where &8¢Z-%) is the Dirac delta function. Substituting Eq. (3.3) into

Eq. (3.1) gives

fO(L 2 QLQ;Lil—{ci‘;}&?-i)d?: O _- (3.4)

Since the Dirac delta function is defined as
O . Xti, . (3.5)

—-

-t
) X=X,

l

oo

b

o0
f d¢i-%,) i
~o0
Eq. (3.4) becomes

™M
L Z a, Qi) = Fz) (3.6)
To solve for the a; coefficients, Eq. (3.6) must be specified at M

points in the domain D. Thus, Eq. (3.6) can be written as

M
Z Q;LQ;(?;H Tz (3.7)

Eq. (3.7) is a general expression representing the collocation method.
For the EPFBE, using the trial solution presented in Eq. (2.16), this

expression becomes

M N
Z JZ. ayj (-/‘L-v K, A v S A&+ 63 S, (&1 AJ(A,-))= (3.8)

A9 KSR A - 908, Aj)
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The coefficients Qi are determined by solving a system of simultaneous

equations resulting from the evaluation of Eq. (3.8) at NXM phase space i
points. _

Comparing Eq. (3.8) to Eq. (2.18) demonstrates the simplication
resulting from the collocation method. Most significant is the absence
of the weight function and outer integrals that caused complications in
the Galerkin weak form equation. Eliminating these two complicating
factors allows the first criterion specified earlier to be met. .

The collocation method does introduce some new compiexities. The

most obvious is that the vacuum boundary condition is no longer treated

naturally. This condition must now be enforced by using

YA = K, f&(ﬁfu-ﬁ'v Yizals O, AA <O (3.9)

as presented in Chapter I. Unlike the Galerkin method, the collocation
method does not generate a symmetric global matrix. This lack of sym-
metry and positive definiteness increases the cost of solving the result-
ing matrix and eliminates the use of some very efficient and fast linear
equation solving algorithms. Another complication results from the
required continuity of the trial solution. In the Galerkin weak form
equation, the functions chosen for use in the trial solution were required
to be continuous. The variational nature of this equation eliminated
continuity constraints on the derivatives of these functions and thus
allowed the use of piecewise continuous Lagrange polynominals. The
collocation method requires the trial solution to have continuous second
derivatives at the mesh nodes. The simplification gained by using the

collocation method forces higher continuity requirements on the trial

solution.




~ A trial solution requiring continuity in the second derivative may
be constructed from cubic splines. A derivation of the cubic spline
é function in one dimension is presented in Appendix I and is denoted as
i A tensor product consisting of-cubic splines representing both
A the spatial and angular variation of the neutron fluence would result
in a global matrix of large bandwidth. In an air-over-ground problem
.é both the spatial and angular domain demand relatively fine zoning. This
- zoning requirement increases the bandwidth problem in the global ma}rix
and increases the computational cost. To reduce the bandwidth a synthesis

function was used instead of cubic splines to represent the angular varia-

ROCRAL

tion of the neutron flhence.

An angular synthesis function was devised to represent the angular

?’."". sy

variation of the even-parity fluence and meet the second criterion

described previously. This function can be represented as

. 2 ]
Acuxr = a,+ ap (upe +Vi-p Ji-u cos (x-x%y) (3.10) ¥

where up and xp are the coordinates of the streaming direction with |
respect to the point source in the particle direction coordinate system.
This synthesis function was devised by considering the expected angular
variation of the neutron fluence. Appendix G describes this synthesis
function.

Eq. (3.10) has properties similar to the ellipsoidal synthesis func-

: tion used in Chapter II. Eq. (3.10) is pitched in line with the streaming i

direction at a particular spatial location. This equation can also be i
g varied to represent the three expected angular fluence shapes presented
in Fig. 6. A highly anisotropic flux distribution occurs when the
coefficient a, is much larger than the «, coefficient. An isotropic

flux distribution occurs when Q, =Q0.
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The primary difference between the synthesis function defined in
Eq. (3.9) and the ellipsoidal synthesis function presented in Chgpter
I1 is the meaning of the coefficients.. The coefficients in the ellipsoidal
synthesis function expansion a]]owea tﬁe blending of three ellipsoidal
shapes to determine the angular approximation. In Eq. (3.10) the coeffi-
cients directly shape the synthesis function for approximating the angular
variation of the even-parity fluence.

The use of a synthesis function to represent the angular depengence
of the even-parity fluence reduces the bandwidth of the resulting ;1oba1
matrix. This reduction occurs since the synthesis function is globally
defined over the entifé angular domain, thus eliminating the need for
zoning. One globally defined function replaces all the tensor product
combinations that would result from an angular trial solution defined
over a discretized domain. Since each tensor product combination occupies
one element in the global matrix, the globally defined synthesis function
can significantly reduce the bandwidth of this matrix. An additional
advantage to using the synthesis function defined in Eq. (3.10) is that
it satisfies the reflective boundary condition. The final form of the

trial solution used with the collocation method is

MmN
Yz A= ; Z 8 (e) QJ-w {a“J’c‘“’J (puporV mad Vi1 cosoc-xo))zj (3.11)
= J=l

where 6 s and B2/ are cubic splines in the spatial domain.

The combination of the collocation method and the trial solution
presented in Eg. (3.11) satisfied the two criteria determined from Chapter
I1I. A computer program was written that used this combination to generate
a global matrix representation of the EPFBE. This program used no numer-
ical integration, since the simplicity of the trial solution and the col-

location method allowed all integral and derivative operations to be
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performed on MACSYMA. The results of these operations were translated

into FORTRAN statements by MACSYMA, thus eliminating the possibility of

. erroneously transcribing these expressions.
A distr%buted first-scatter sourcé term was used in this computer

X code. The angular distribution of the neutron fluence near the point

source is extremely anisotropic. This anisotropy is so severe that the
3 angular synthesis function represented by Eq. (3.10) would have difficulty
in accurately approximating such an anisotropic shape. The use of the

-

B first-scatter source allows the scattered and unscattered neutrons at a

point to be treated separately. Eq. (1.6) gives at ¥ the angular dis-

- tribution of first-scattered neutrons which were emitted from a point

-

+
!
»
source located at % . The uncollided neutrons arriving at ¥ are given ig

E; by
3 . Scaj et Ci-orer))
T (3.12)
:_ while those that interact either through absorption or scatter are
X represented by
. -y _A -t
L ScR) CH"O'Y(", (3.13)

The scattered fluence is less anisotropic then the total fluence and may
be represented by a function with a simple angular dependence. In the
final solution the uncollided fluence is added to the calculated value
f% of the neutron fluence in the streaming direction.

As previously mentioned, the collocation method requires an evalua-

tion of Eq. (3.8) at a number of phase space points equal to the number

o <
-~ e -

of coefficients in the trial solution. The trial solution presented in

o
i —

Eq. (3.11) requires Eq. (3.8) to be evaluated in two distinct angular

e ARGy -2 e a ———




directions at each spatial location. In the collocation based computer
code, these angular directions were always selected as the streaming
direction and a direction perpendicu]gr to the streaming direction. The
choice of these two directions a11owedhfhe coefficients to be defined
in the most meaningful manner based on their role in properly shaping the
angular synthesis function. The spatial collocation points were chosen
as the nodes of the mesh. The only exception occurred along the mesh
linepso. On this mesh Tine the reflected boundary condition must Eg
enforced. Since the chosen trial solution automatically satisfied this
constraint, spatial collocation points were chosen at a value of p slightly
greater than zero. ATéng the vacuum boundaries the code provided the
option of either evaluating Eq. (3.9) at two angular directions or enforc-
ing the EPFBE in one angular direction and the vacuum boundary condition
in the other direction. A flow diagram of the collocation computer code
appears in Appendix H.

The structure of the global matrix resulting from the use of the
selected trial solution and the collocation method was primarily determined
by the cubic splines. fhe structure of this matrix for the spatial mesh

in Fig. 7 is illustrated in Fig. 8.

Problems

An air-over-ground problem was attempted using the collocation
method. The spatial mesh used for this problem was identical to the one
illustrated in Fig. 7. Collocation points were selected as previously
described and the vacuum boundary condition was enforced along the appro-
priate boundary surfaces. To generate a solution to this probiem the
collocation global matrix assembly program was expanded. This expansion

was necessary to determine the coefficients of the trial solution,
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SPLINE COMBINATIONS

(551) (5155) (8483) (83540 (5,8,) (585 (8584) (5,5, (858)) (558,) (5583) (8584) (45,) (5485) (5,5,) (5,5,

3l Xx xx xx xx
s, xx xx X2 XX
7, ] rx o xx oxx xXx XX xx
e s, xx xx xx Ty KX XX
‘;" XX Xx XX XX xx xx
1, XX XX XX XX XX x1x
1, 3, XX oxx X oxx
[ XX xx XX xx
3, 1 oxx XX ok X xx
Lixx xx X XX Xx  xx
1, aGlxx xx xx X XX X XX xx xx
e, Llxx xx xx XX XX xx X xx oxx
1, O XX xx xx XX xIx xx XX xx xx
[ XX xXx xx XX XX xx Xx XX xx
| M XY X Ty oxx XX oxx
[ XX X XX oxx XX xx
3, . Xx  xx XX xx XX xx
3, xx XX Xx xux Xx xx
3, 5 XX XX XX XX Xx xx XX XX xx
e; [ XX XX XX XX XX XX XX xx xz
2, . Xx XX xx £X Xx xx Xr xx  xx
19 Xx xXx xx XX XX xx XX xx  xx
l‘(u‘ X5 %X X xx xx a1z
. XX XX XX xx xx  xx
[ XX xx XX xx
[ X XX Xx xx
) XX xx  oxx [ S N ]
e, ., X xXx  xx XX xx xx
1, i X xXx xx I oxx oxx
1, XX XX xx XX oxx  oxx
i, L XX X 1 3 X%
ay X oxx XX x1

(a,.,az) = anqular collocations points

(Z] ,22,23,24) = (7,8Mm,160m,240m)

= £ coordinate collocation points
(Fys65sF30f,) = (0,80m,160m,240m)

= ‘Ocoordinate collocation points

X = a nonzero matrix element

Fig 8. Global Collocation iMatrix
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analyze the resulting global matrix, and reconstruct in terms of the trial
solution the even-parity, Boltzmann, and scalar fluences. So]utiop
coefficients were determined using gaussian elimination with full pivoting.
The input to this 1inear equation so1Vihg routine was the collocation
global matrix and source column vector computed from the global matrix
assembly program. The global matrix was analyzed by determining its con-
dition number which was calculated as the ratio of the largest to the
smallest eigenvalue. (The eigenvalues were determined by the International
Mathematical and Statistical Libraries routine entitled LSVDF.) R;ébn-
struction of the desired fluences was accomplished from the solution
coefficients and basis functions of the trial solution for the spatial
location chosen. The reconstruction program used many of the same sub-
routines that were developed for the global matrix assembly program. The
logic of this system of programs is illustrated in Fig. 9. Each subrou-
tine contained within the global matrix assembly program and fluence
reconstruction program was independently checked to assure that its logic,
programming, and interface with the driver routines was correct.

The solution generated by the collocation method to this air-over-
ground problem was disappointing. Most significant was that the scalar
fluence was negative at several node locations in the spatial mesh.

Also both the Boltzmann and even-parity fluence exhibited negative values
for several angular locations at each spatial node point. Negative angular
fluences values were not Timited to spatial node points, but also appeared
at off node spatial locations throughout the spatial domain. Those scalar
fluence values that were positive did not make physical sense. The value
of the scalar fluence was often larger on the boundaries then near the
interior of the spatial mesh. Also the condition number of the resulting

global matrix was 105.
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Several means were attempted to improve these poor results. The
meshing of the spatial domain was refined. This refinement increased
the number of nodes from sixteen to thirty-six, thus increasing th; size
of the global matrix to a 72 x 72 sys¥em. This refinement produced no
change in the previously observed behavior of the fluences and increased
the condition number to 108.

The method of selecting collocation points was altered. Spatial col-
location points were selected at locations other than at the spatial nodes
and angular collocation points were selected away from the streaminé‘
direction. Again the behavior of the fluence remained the same and the
conditon number did not change appreciably from the original value of 10,
In addition a new difficulty was encountered. This difficulty involved
selecting spatial collocation points that were not located on either the
vertical or horizontal mesh 1ines. Distributing these points evenly
around the spatial mesh proved impossible and forced a random type of
selection. The optimum way of picking these points from the unlimited
number of combinations available was not clear. This random selection
process was abandoned, since the resulting solution exhibited the same
problems originally encountered.

Another attempt at resolving these solution problems used the option
mentioned earlier of collocating either the EPFBE or vacuum boundary
condition on the appropriate boundary surface. Two different approaches
were tried. The first approach allowed the vacuum boundary condition to
be used for both angular collocation points at a boundary spatial node.
The second approach divided the two angular collocation evaluations
between the EPFBE and vacuum boundary condition. In both cases the

behavior of the scalar fluence and value of the condition number remained

51




T

;.
1

>
A
t..
b,

effectively the same as the original result. At this point it was becom-
ing increasingly clear that a fundamental problem existed with the colloca-
tion method. To unco?er this problem a simple diagnostic problem'has

used, :

This diagnostic problem assumed a uniform isotropic neutron source,
isotropic scatter, and isotropic boundary conditions., Its solution, as
verified by a DOT 3.5 calculation, is a flat spatial distribution isotro-
pically distributed in angle. The simplicity of this problem allowed
several different formulations of the EPFBE to be evaluated. These various
formulations differed in complexity and all had the capacity of generating
an accurate solution to this problem,

The simplest formulation was derived by using the isotropy of the
known solution. This isotropy allowed all terms in the EPFBE related to

the odd-parity fluence to be eliminated. The resulting formulation was

Gj \;j(»‘,;\) . Sj(aa (3.14)

The collocation global matrix assembly program was modified to solve Eq.
(3.14). This modification included replacing the first-scatter source
term and vacuum boundary condition with those associated with the diagnos-
tic problem. The source term and boundary condition for the diagnostic

problem were respectively defined as

{
59 (FA) ¢ I ( 0y (FI -GGy (F)) (3.15)
L -
Yu‘,»{) = 47 for » on the boundary, (3.16)

The collocation method generated the correct solution to the diagnostic

problem using this formulation of the EPFBE. This result was encouraging,
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since it confirmed the logic and programming accuracy of the subrountines

in the global matrix assembly program and reconstruction program.

A more complicated formulation was attempted next. This formulation

was
(3.17)

“Av k“ A9 ‘P:;;A) * C;‘7 Ye2a) = Sj (FR)
where Sb(ak) and the boundary conditions were the same as the previous
problem. For this formulation the collocation method did not generate a
flat scalar fluence distribution. The boundary scatar fluences wefeocor-
rect, but the interior mesh values varied by as much as 20 percent. For
this formulation all the scalar fluences were positive. The same formula-
tion was solved again using a more refined spatial mesh. The solution
was the same, indicating the original mesh was adequate.

The formulation presented in Eq. (3.14) was next used with the fol-

lowing form of the diagnostic problem boundary condition
(3.18)

VYesar + Xera)= wm

Eq. (3.18) represents a statement of the diagnostic problem boundary
condition in terms of the Boltzmann fluence. The collocation method must
be able to handle this type of boundary condition formulation, since in

all transport problems the physical constraints on the boundaries are
specified in terms of this fluence. In the collocation computer program
Xc4i) was replaced by the odd-parity fluence transformation Eq. (A.20).

The solution generated by the collocation method for this problem was again
incorrect. The interior scalar fluences were correct; however, the
boundary scalar fluences varied by 120 percent.

The final formulation used Eq. (3.17) with the boundary condition pre-

sented in Eq. (3.18). The collocation method generated a solution for
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this formulation that was utter nonsense. This solution had several nega-

tive fluence values both in the interior of the mesh and on the boundary.
The scalar fluences that were positive were not equal and could not have
generated a flat spatial distribution. -

Problem Analysis

The poor results generated by the collocation method can best be
explained by using a 1-D plane geometry formulation of the diagnostic
problem. In this simplified formulation a suitable synthesis trial solu-

* -

tion for the standard Boltzmann equation is

N
I(xlu) = ‘z_. Gg(x) (a.; +ay um) (3.19)

where f.«)is a cubic spline basis function. Using the defintion of the

even-parity fluence with Eq. (3.19) generates the following trial solution

Yoou) = 2 a8 (3.20)

Mz

Applying the odd-parity fluence transformation presented in Eq. (A.20) to
the trial solution of Eq. (3.20) results in 3

N
X(x,u) =-2 a, #;m %(Qm) (3.21)
e

for a Po scatter process. The boundary condition of the diagnostic

problem in terms of *QX.MJ and l&X,LL) can be written as

P oxw = Yoour r Xoxw = w5 (3.22)

Using Eqs. (3.20) and (3.21), Eq. (3.22) can be rewritten as
~N
- ..
}-(x,u.) =2 a, (@-(x) - &G & (5,;00)) (3.23)
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By the definition of the collocation method Eq. (3.23) can be satisfied

for one selected angular collocation point at a particular spatial_ node.
Eq. (3.23) can not be properly constrained to generate the isotropic
boundary condition. In any other anguiér direction other than the selected
collocation direction the value of the boundary condition is not 'f% .

The odd-parity fluence transformation has forced the Boltzmann fluence to
have an anisotropic component. This can be easily seen by the presence of

the ;4 variable in Eq. (3.23). Ideally for the diagnostic boundary gpndition

the following relation should hold:

Xoxw = Z a; o % (8w)= O (3.24)

however; this would require either
(1) all the a,:’sto be zero in which case Yy = O at all phase
space points.
(2) % (Biw)x: O , which is only true for the spline centered at

a node and since splines overlap in mesh intervals this is not

in general true ( Xg= boundary node location).

A d & u_ d -
(3) a, oix) dx (56"”)(("' Q,;,, o0 5;(62"“’ ,l*a.;.; 501 (Ec'oz("’)L‘;O
s s

which is not enforced in the collocation set of equations.

The conclusion is that the selected synthesis trial solution is not
transformable through the odd-parity fluence transformation into a trial
solution that accurately represents the anisotropy of the fluence.

The odd-parity fluence transformation is also present in the even-
parity equation. As demonstrated in Appendix A the odd-parity fluence is
contained in the first term of this equation. If the even-parity equation

is being derived for the diagnostic problem, this first term would appear

as




w oz (Xenw) (3.25)

To eliminate the X variable from the even-parity equation the odd-parity
fluence transformation is used. This is accomplished by substituting the

value of X(xu) from Eq. (3.24) into Eq. (3.25), thus generating
od [ A
M aAX ( Or(xi _ZY("IJ(X,A.))) (3.26)

Simplifying Eq. (3.26) gives

u? Vet
T oy ?ﬁ(: (3.27)

The full even-parity equation for the 1-D plane geometry diagnostic prob-

lem is
2 2
TSR S (WY _ |
ooy —dxr t onx) Voo G4¢x) | Vxurdp'® Tn (3.28)
4n

Substituting the trial solution of Eq. (3.20) into Eq. (3.28) yields
ut ol 6( ] !
a.‘ ( 0;(x) - * (o700 = G5y u))ﬁcx))= 7 (3.29)
i~

Obviously to generate a flat isotropic Boltzmann fluence, the first term

of Eq. (3.28) must be zero, since its origin is the difference between

sl dih
the leakage in the s« and-a4 angular directions. If aywl L could
be made equal to zero then Eq. (3.29) would be
od !
Z a,; (oytxl - o)) Bex) = T (3.30)
Z ' (3.31)
a, B = Ty (o5(x) - 04 (x1)

which generates the correct solution to the diagnostic problem. In the

collocation method there is no means to set this term equal to zero.
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Just as in the boundary condition, the odd-parity fluence transformation
has forced an incorrect anisotropy into the solution.
To determine tne form of the anisotropy resulting from the odd-parity

fluence transformation, an analysis was performed. This analysis was

B ]

based on an interpolation procedure similar to the one used to apply the

Boltzmann fluence boundary condition to the even-parity equation. In

this procedure three different trial solutions were used to represent

the even-parity fluence. These trial solutions were selected because

they illustrated specific problems related to the odd-parity fluence trans-

formation. For each trial solution a simple spatial mesh was constructed

and where necessary an angular mesh. All results were generated using

the same sequence of programs that were used in solving the four versions

of the diagnostic problem. Modifications to these programs were made to

account for the different interpolating functions. All angular plots

presented are typical of those seen at all the nodes in the spatial mesh.
The first problem used the trial solution presented in Eq. (3.19) and

solved the interpolation problem of Eq. (3.22) with the 1/4 77 replaced by

100. Fig. 10 illustrates the results of this problem for various values

of the total macroscopic cross section (axw). This interpolation problem

demonstrates graphically the explanation that was presented using Egs.

(3.19) thru (3.31). The spatial mesh for this problem had nodes at 0O,

10, 15, and 20 cm. The angular collocation point at each of these spatial

nodes was taken at u = 1 which corresponds to the streaming direction in ;

a 1-D plane geometry problem.

4

In Fig, 10 o6, was varied from infinity to 107" /cm thus varying

the effect of the odd-parity fluence transformation. For og= o an

isotropic fluence distribution across the angular domain was generated.
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This result was analogous to the first version of the diagnostic problem
that generated acceptable results. As illustrated by the other curves in
Fig. 10, reducing the value of o increases the weight of the odd-parity
fluence transformation in determining the angular distribution of the
Boltzmann fluence. The effect of this transformation is most clearly
demonstrated by the odd functional nature of the resulting Boltzmann

angular fluence distribution for o, = 109

/cm.

For the trial solution presented in Eq. (3.20), the resulting aniso-
tropy is fixed. The collocation method can alter the magnitude of the
anisotropy, but can not change its relative angular distribution. Thus
the anisotropy demonstrated in Fig. 10 will exist at all spatial locations.
This is obviously unsatisfactory since the anisotropy in most transport
problems (especially in an air-over-ground problem) varies from one
spatial location to another.

In the second interpolation problem a pure spline basis is used as

a trial solution for the even-parity fluence. This trial solution can

be represented mathematically as

K'J(M,AU = E Z C; Q-(,L) 8.(,_(/ (3.32)
J v

L‘IJ'"

where éi{ﬁ and éy(p/are cubic splines defined respectively over the

spatial and angular domain., From this trial solution the Boltzmann flu-

v.y._._,—v-v_;v-—-—,—-—r

ence is formed for a 1-D plane geometry and appears as
N oM
- U o6

E(x,,q) = Z Z' aij (q.mg.(«, - G ‘,5/,'(/‘/ I ) (3.33)

= g=
i

A

Eq. (3.33) was interpolated across a spatial mesh with three nodes located
4 at 1., 10., and 20. cm and an angular mesh with three nodes located at

-1, 0, and 1. The spatial and angular nodes also served as collocation
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coordinates, where the Boltzmann angular fluence (Eq. (3.33)) was forced
to equal 100. Again with o3 set equal to infinity a flat isotronc
angular distribution was generated across the spatial domain. In Fig.
11 and Fig. 12 the value of oy is continuously decreased. The curves in
these figures demonstrate the same trend seen previously with the 1-D
synthesis trial solution. As o3 decreases in value the dominance of
the odd-parity fluence transformation increases.

Unlike the synthesis trial solution tﬁe pure spline trial so]uEion
can alter the anisotropy. This alteration can be achieved by more finely
discretizing the angular domain and thus forcing the solution to be con-
strained at more anguTér nodes. This apprcach generates two disadvantages.
First, the behavior of the trial solution in Eq. (3.33) would still be
dominated by the odd-parity fluence transformation between the nodes for
small values of o . This dominance forces an artifical anisotropy
between the nodes that in an exact solution would not exist. This arti-
fical anisotropy would affect the evaluation of the boundary condition
and first term of the even-parity equation in a manner similar to that
observed in the diagnostic problem. The degree to which this effect
would alter the final solution is directly related to the number of nodes
used in the angular domain. Increasing the number of nodes leads to
the second disadvantage. This disadvantage addresses the size of the
resulting global matrix that would be generated using a pure spline
basis. The total number of coefficients that must be solved for to obtain
a solution to the EPFBE is equal to the number of unknown coefficients in
the trial solution. The trial solution presented in Eq. (3.33) would
result in a global matrix that has a row and column dimension equal to

NXM. Increasing the number of nodes by & in the angular domain results
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in an increase in the dimensionality of the global matrix of M . For
an air-over-ground problem a suitable pure spline trial solution.for the
even-parity fluence is

\P(e,%,q,’x) = ZZi Z a,,J,‘L 8‘ e BJ(!I 8‘(,«(1 8,_(’)() (3.34)

k.a."u LS S

Refining the angular mesh a factor of A in theu and X coordinates would
result ina ~Nm{a(oer)+ &) increase in the dimensionality of the glob-
al matrix. The acceptable value of A needed to offset the artificgl
anisotropy effect of the odd-parity fluence transformation is not known,
but based on the results of the diagnostic problem and presented figures
would appear to be qufte large. A large A would result in a large

global matrix. This matrix would be nonsymmetric and costly to compute
and solve, thus eliminating the pure spline basis as an efficient means

to solve the even-parity equation, especially for an air-over-ground
problem.

The third trial solution used to demonstrate the anisotropy effect

of the odd-parity fluence transformation was the one presented in Eq. (3.11).

For this trial solution an interpolation problem was not formulated. A
more simple and direct means of demonstrating the effect of the odd-parity
fluence transformation was found. A two-dimensional spatial mesh in
the coordinates © and Z was constructed. The nodes in both the © and
£ direction were located at 1., 10., and 20. cm. At the coordinate loca-
tion (10., 10.) the Boltzmann angular fluence distribution was calculated.
This calculation was performed by the fluence reconstruction program.
Input to this program included the spatial mesh, solution coefficients,

o7 (¥) , and the jocation of the point source that determines the pitch

of the trial solution at the various spatial locations. A3}l solution
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coefficients were set equal to one. The point source was located at the
spatial coordinates (Q., 10.), thus making the pitch axis of the trial
solution parallel with the p axis. .

Figs. 13 and 14 illustrate the ;eSUlts of the fluence reconstruction
program. Figs. 13a and 13b demonstrate the angular distribution of the
even-parity fluence for x = 0 and 77 respectively. Figs. 13c and 13d
show the form of the odd-parity fluence derived from the trial solution
of Eq. (3.11) for various x locations. Figs. 14a thru 14d are plots of
the Boltzmann fluence for various x locations and values of o3 . fﬁe
significant thing to note from these plots is the anisotropy that is
forced on the Boltzmann fluence by the odd-parity fluence transformation.
A polar plot of Figs. 14a and 14b is presented in Fig. 15. This polar
plot represents the angular synthesis function for the Boltzmann fluence
as derived from the even-parity fluence angular synthesis function and
odd-parity fluence transformation. This function is not representative
of the angular distribution expected from either the diagnostic problem
or an air-over-ground problem. This poor representation is caused by
the inadequacy of the selected even-parity angular synthesis function to
be transformed into an accurate representation of the anisotropic com-
ponent of the Boltzmann fluence. As evidenced by Figs. 14c and 14d the
derived angular synthesis function becomes worse as the dominance of
the odd-parity transformation increases. The negative values seen in
Fig. 14c could have contributed tc the negative fluence values calculated
in the diagnostic and air-over-ground problem.

The conclusion of this chapter is that the collocation method is

not suitable for solving the EPFBE. The main failure of this technique

lies in its point-wise definition. This definition forces the selected
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trial solution to accurately represent the even-parity fluence and be

transformable into an accurate representation of the odd-parity fluence.

As seen in this chapfer the standard finite element trial so1utioa (pure

spline basis) and combination finite'éiEment synthesis function trial

solution do not meet this criterion. The Galerkin method reduces these

stringent requirements on the trial solution by allowing the even-parity

equation to hold in an integral sense rather than a point-wise sense.

The integration operations associated with the Galerkin weak form equa-

tion act as a smoothing apparatus and shapes the trial solution to Teet ]
the phase space volume requirements imposed by the weak form equation.

Ironically the very thing that caused the Galerkin method to fail, the

nested integrals, is also the reason a finite element method can success-

fully generate solutions to the EPFBE.
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qadaw)= in group even-parity differential scattering cross section

[ ] ‘I = ~r a
O, (A"A) Z at?) - ghed) 8_(,1.4)

IV. Multigroup Considerations

Background

The energy dependence of neutral particle fluences must be cénsidered
in an air-over-ground problem. The ﬁultigroup method (Ref. 1) is used to

approximate this dependence. In multigroup theory the definition of

various cross sections are modified and new cross sections are defiﬁed.
Multigroup cross sections have been previously presented in relation to
Eq. (1.3) for the regular Boltzmann equation. Similar definitions result .
from the EPFBE when formulated in a muitigroup structure. The EPFBE

written for group h is

° h. A e h oonh
-A-vK, AeYEa+ G Yaa = S;ear-Avk, Siear (4

TRRORpT—

where

h
V’(FLA) = the even-parity fluence for group h

Kh and Gh are equivalent to the Ku and G, operators written for group h

g
and are defined as

o h ! A A
KA fea = o CF) ( fea *[:O::_ (A'A) 'f(i'/o(n") (4.2)

A
G, fe)

b A
o’,“(r‘) f(ﬁ) "[ Ty (ALA) 'F(A')a{,’i' (4.3)
4n

where

Ao . .
O (F) = macroscopic total cross section for group h ;

A
T !

e L= odd.

(F) = fth order Legendre coefficient for group h)

%
&(,{'.,:) = Lth order Legendre polynomial)
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eS: (FLA) and OS:U‘./‘\) are equivalent to the even and odd-parity
source terms written for group h. These terms differ from the mqnpenergetic
forms of these source terms in that the down-scatter from higher energy
groups must be included as dictated by particle conservation. The even

and odd-parity multigroup source terms can be defined respectively as
A=t

i e huteias oabeade ot s M b e e

e~h h 9 .
ATV SRENWEYY "f 2 aigh (FAA) T (R eA (4.4)
yn 9= :
b = < + AZ' : A EIPIL (4.5)
Sr (F A~ \S; (R R) 0"5315 (:‘,A'A)X(rt)dﬂ- .-
un 3%
where
Ao .
Se i) = group h even-parity source term 4
N | i
S, (FAJ] = group h odd-parity source term

c§§AO€A‘A) = even-parity down scatter cross section from group g to
group h i

= odd-parity down-scatter cross section from group g to
group h

A A) = even-parity fluence in group g
W ¢#/A) = odd-parity fluence in group g

Multigroup Analysis

A multigroup solution of Eq. (4.1) was accomplished by Kaper, Leaf,
and Lindeman (Ref. 27) using the variational formulation of this equation.
These authors assumed that the scattering was isotropic. In an air-over-
ground problem this assumption cannot be made, since scattering in air
is extremely anisotropic. When the scattering must be modeled as aniso-
tropic, the left hand side of the weak form of the EPFBE becomes extremely

complex as evidenced in Chapter II. When the multigroup method is applied
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to either the EPFBE or its weak form the source terms increase substan-

tially in complexity. The multigroup method does not significantly affect
the left-hand side of either formulation. —

To illustrate this increased coﬁﬁ]éxity a comparison is made between
using an isotropic and anisotropic scattering representation in the source
terms of the multigroup EPFBE. For an isotropic scattering process Egs.

(4.4) and (4.5) can be rewritten as

e ~h h Aot s

Sru‘,fx)’ Sctaft)* 2 o:,"/ Y oi (4.6)
9=! un

o~k A

Sr(i‘“,/i) = .5:,(»'-7&) (4.7)

The integral term in Eq. (4.5) is only defined for odd Legendre coefficients
and thus for an isotropic scattering process equals zero., Eq. (4.6) is analo-
gous to Egqs. (2.28) and (2.29) in terms of simplicity and once again allows
the integral in Eq. (4.6) to be evaluated once to any desired accuracy
and stored for future use. The simplifying assumption of isotropic scat-
ter played an essential role in the successful results generated by the
previously mentioned authors.

Anisotropic scattering forces the use of the odd-parity fluence tem
in a multigroup formulation. This term appears in the odd-parity source
term as jllustrated in Eq. (4.5). Substituting the definition of the odd-

parity fluence into Eq. (4.5) yields

© ‘\ L) A-t ® /0 9
5, (FA) = So LRA) + Z a;§A(r‘,Aﬂa)K,'(S:(aa')-/i-v‘f'm)d/{' (4.8)
qhgsl

The complexity of Eq. (4.8) can best be illustrated by assuming a multi-
group problem with m groups. For the first group the odd-parity source

term can be written as
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[ 1 [
ST(?,;\H 5 (FA) (4.9)

The second group odd-parity source term must include a down-scatter term
to account for the neutral particles that scattered from group 1 to

group 2.

0 -2 2
, (FA)T S,ctm*for,,, )qud (4
n

but as previously described

X'u*ﬁ)‘ K (5(“')"4 v‘f'crn)) (4

and thus Eq. (4.10) can be written as

05:(”7’:‘) = 'A} /,,z (RAA ){V (5(“') /\V‘F(“'))Jd 4

The complexity of the multigroup method becomes evident in formulating
the odd-parity source term for group 3. This source term can be written

as

6d 2 ! ?
S;ea0t S +[n[q‘:,mawxfaw+o;;,(f,/:fa))(zaa-)]om (a

Expanding the second term in the integral results in

[m Cs23 (R A ){K (5 (FA)- A"V Yj(z/i'))_] dAr’ (4

Substituting Eq. (4.12) into the first term of Eq. (4.14) generates

[ ecewns KL St sansark{Soer s oosal

Yn .
n

If all the terms resulting from the K, operator were written out in full

form, one term in £q. (4.15) would appear as

.10)

1)

12)

.13)

J14)

15)
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In a similar manner the term in Eq. (4.15) containing A"V Yeid') 3150
becomes embedded in a set of nested intégra]s. When the K; operator is
fully expanded one term of this expansion would appear as

—1_._’__ ...,,.,, N 4. 7
o) a,‘(::[c;“(g,g_t,;%c‘:‘(.j J—m(i;,t“. ") o- (HAMA") VY(M “)dA (4.77)
yn “n

divdA" R’
The nesting problem for both Egs. (4.16) and (4.17) becomes worse when
the number of energy groups increases. The problems involved with';;al-
uating the integrals in Eq. (4.17) are similar to those mentioned in
Chapter II for both a bure spline and spline synthesis trial solution.
The complexity illustrated in Eqs. (4.16) and (4.17) increases when
the odd-parity source is placed in the Galerkin or collocation formulations.

For the Galerkin formulation the odd-parity source term appears in the

following term

- - A R P .
[r[, (A VECF A, K., Srff‘.nt)>ol«o(r (4.18)
n

In the collocation method it appears as

Ao K (rn (4.19)

The complexity of doing multigroup calculations using the EPFBE does
not exist for the first-order Boltzmann equation. The essential difference
is that the first-order Boltzmann “luence is not defined in terms of a
source. The odd-parity fluence is aependent on the odd-parity source term
due to the requirement of defining this fluence in terms of the even-
parity fluence during the derivation of the EPFBE. The complexity intro-
duced by applying the multigroup method to the EPFBE is analogous to the

complexity that evolved in the Galerkin method.
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This chapter has demonstrated the problems involved with using the
EPFBE in a multigroup scheme. These problems must be solved before this
equation can be used to generate accurate and cost effective solutions

to an air-over-ground problem.
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V. Summary, Conclusions and Recommendations

Summary and Conclusioens

The purpose of this research was-to determine the feasibility of
using the even-parity equation to caléJ]ate the neutral particle fluence
distribution for an air-over-ground problem., In pursuing this research
several different approaches were attempted. Each of these approaches
involved an application of a standard finite element technique to an
appropriate form of the EPFBE. The only deviation from this standard
approach invoived the use of the synthesis method. This deviation can
not be considered radical since numerous authors reported its successful
use in solving transpéét problems. The choice of the EPFBE was motivated
by its mathematical properties that potentially eliminated ray effects.
Combining the finite element and synthesis method to solve the EPFBE
appeared to be reasonable.

Two basic problems related to the EPFBE evolved. The first problem
involved the complexity that occurred when the weak form of the EPFBE was
applied to the air-over-ground problem. The two-dimensional cylindrical
geometry required by this problem coupled with the need for a P3 scatter-
ing representation contributed heavily to this complexity. Another
contributor was the finite element method. The discretized angular and
spatial domain used with this method and the linear Lagrange polynomial
trial solution defined over these domains eliminated the use of analytical
methods for evaluating the weak form equation integrals. Numerical inte-
gration of this trial solution over the same domains was extremely
inefficient and would have required a high order quadrature set to

generate acceptable results. The cost of numerically evaluating the weak
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form integrals to the necessary accuracy proved prohibitive for a full

scale air-over-ground- problem. _
This integral problem originated from the choice of the Galerkin
method. Angular integrals were already present in the EPFBE because of

the K, and G, operators. The definition of the Galerkin method added

9
additional angular and spatial integrals that resulted in the nesting of
up to six integrals in some terms of the weak form equation. Other finite
element methods such as least squares would have generated the same_
nesting problems and complex integrands as the Galerkin method.

The synthesis method was not successful with the weak form of the
EPFBE due to the choité of the function representing the angular distribu-
tion. This synthesis function was not analytically integrable and was
complex enough to require the use of higher order quadrature sets.
Additionally, the form of the function did not allow the pitch parameters
of the ellipsoid, which are spatially dependent, to be separated from
the angularly dependent variables. This fault eliminated the possibility
of separating the angularly and spatially dependent terms in the weak
form equation and forced all integral evaluations to be coupled. Such a
coupling required all integrals to be reevaluated whenever the spatial
mesh was altered.

A conclusion of this research is that the use of a pure linear
Lagrange trial solution coupled with any of the integrally defined finite
element solution techniques does not provide a viable means for solving
the EPFBE formulated for an air-over-ground problem. This conclusion
probably applies to any two-dimensional transport problem requiring

the use of a P3 scattering representation.
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The second basic problem associated with the EPFBE involves the odd-

parity fluence transformation. As demonstrated in Chapter IIl this trans-
formation forces a certain anisotropy-on the solution of a transport
problem and adverseiy affects the co]Tdcation evaluation of any term

in the EPFBE or boundary condition that contains the odd-parity fluence.
The form of this anisotropy is fixed and at best can only be scaled in
magnitude by the solution coefficients determined from the collocation
method. The only possible situation that would allow an acceptable solu-
tion is when the anisotropy generated from the odd-parity fluence trans-
formation matches the anisotropy of the true solution. Such a situation
is highly improbable éﬁd certainly was not the case for the air-over-
ground problem,

Attempting to derive a synthesis trial solution that accurately
represented the anisotropy of a particular problem would be extremely
difficult. Such a synthesis function would need to satisfy the constraints
imposed by the even-parity fluence and be transformable using derivative
and integral operations into a function that accurately approximates the
odd-parity fluence or anisotropy. The central difficulty of this deriva-
tion would be understanding what constitutes a good representation of the
anisotropy for a certain problem. Most transport problems are so complex
that accurately approximating the anisotropy would be virtually impossible.
Additionally, the type of transport problem that the above derivation
would be applicable must have a fixed anisotropy across the spatial domain.
Few realistic problems meet this constraint.

The forced anisotropy originating from the odd-parity fluence

transformation also affects a pure spline trial solution. The effect of
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this anisotropy appears between the nodes and modifies the shape of the
spline functions in the angular domain. At the nodes the collocation
method forces the correct solution...This modification from the original
spline shape is the forced anisotropy'{nduced by the odd-parity fluence
transformation. The only cure for this problem is to space the nodes
closer together in the angular domain. The consequence of this action
is to create a global matrix of high order that is costly to compute
and inefficient to solve. The optimum spacing of the nodes would nge
to be determined through experimentation and would vary from one type
of transport problem to another.

It is concluded ffom this research that the collocation method can
not be effectively applied to the EPFBE. This statement must be qualified.
The synthesis method is totally incompatible with the requirements of
forming the odd-parity fluence through the odd-parity fluence transformation
and thus an efficient solution method based on synthesis and collocation
is not possible. A pure spline trial solution might generate an accept-
able transport solution with the collocation method; however, the amount
of discretization required in the angular domain to offset the forced
anisotropy would prohibit the classification of this approach as efficient.

The multigroup problems described in Chapter IV are common to any
solution technique proposed for use with the EPFBE. The structure this
method imposes compounds the complexity already inherent in the EPFBE.

This complexity increases with the number of energy groups and would
restrict the use of the many grouped cross section sets commonly used
in an air-over-ground problem. Accurate transport solutions are not

possible without using these cross sections. A conclusion of this
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research is that the standard multigroup method can not be used with the
EPFBE formulated for_an air-over-ground problem. )

Three significant points concerning the EPFBE have resulted from
this research. Milier, Lewis, and Roégow (Refs. 25 and 26) presented
a solution technique that successfully eliminated the ray effect. The
finite element method applied to the even-parity functional appeared to
have potential for other types of transport problems that are affected
by this numerical problem. This research has definitively demonstrated
that the work of the above authors can not be extended to an air-over-
ground problem and is probably limited to the simple geometries and scat-
tering models used inifheir published work.

This research has also provided the basic criteria for attempting
future work with the EPFBE. The solution technique used to solve this
equation must be integrally defined and contain the vacuum boundary
condition as a natural condition. The trial solution selected for use
with the EPFBE must be globally defined, thus eliminating the inefficient
numerical integration problems encountered in Chapter II. If the trial
solution contains an angular synthesis function it must be simple in form
and allow those parameters related to the pitch of the streaming direc-
tion to be separated from other angular variables.

The third point addresses the problem of reconstructing the Boltzmann
fluence from a numerical solution of the EPFBE. As demonstrated in Chapter
II1, the odd-parity fluence transformation does not accurately represent
the anisotropic portion of the Boltzmann fluence. The central problem
with this transformation is its dependence on the spatial and angular

derivatives of the selected trial solution. Typical finite element trial
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solutions are selected primarily on the requirement of mathematical con-

tinuity. Synthesis trial solutions are selected because they accurately
approximate some functional variatiqq.of interest. For the even-parity
equation neither of these types of trial solutions are satisfactory
because their angular and spatial derivatives do not accurately approxi-
mate the anisotropic portion of the Boltzmann fluence. Additionally,
the specification of the EPFBE does nothing to constrain these deriva-
tives for accurately approximating the odd-parity fluence. 1t is ?‘Con-
clusion of this research that the anisotropic component of the Boltzmann
fluence can not be accurately calculated using standard finite element
and synthesis techniqbés. The impact of this conclusion is that the
Boltzmann fluence can not be accurately derived from a solution of the
EPFBE resulting from the use of these numerical methods. Successful
work using this equation was always reported in terms of the scalar
fluence. The angular fluence results were never presented.

Recommendations

Three facets of future work are proposed for calculating scalar
fluences with the monoenergetic form of the EPFBE. First, a parametric
study should be performed to determine the effect of reducing the order
of the Legendre expansion representing the differential scattering cross
section. If a P] representation could produce acceptable results, the
decrease in complexity would allow the analytical formulation of the
weak form of the EPFBE using a pure linear Lagrange trial solution.

Second, the angular synthesis function presented in Chapter III for
use with the collocation method should be attempted with the weak form
of the EPFBE. The successful analytical formulation of the EPFBE using

the collocation method grants much credence to this proposal. Additionally
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. this angular synthesis function allows the pitch parameter to be separated
from the other angu]gr variables. This property would permit a tgta]
separation of the spatially and angu]gr]y dependent terms and thﬁs the
individual integral evaluation of eéch} Since this angular synthesis

function is globally defined all analytical evaluations could be accom-

plished using definite integrals. These definite integrals would not
create the large number of terms in MACSYMA experienced in the indefinite
integration process used in Chapter II. This proposal is not without
risk. The trigonometric functions in the angular synthesis functi;;

must be multiplied by similar functions as specified by the Galerkin
method. These products of trigonometric functions are analytically

evaluated using reduction formulas that can generate several terms. 1

This increased number of terms coupled with the extra integration over

the angular domain required by the Galerkin method could cause problems
with MACSYMA's limited memory. If memory problems evolve, a combination
of analytical and numerical integration could prove feasible.

The third proposal involves a modified form of the synthesis trial

solution presented in Chapter III. This trial solution can be modified
for use with the first-order Boltzmann equation. Adding an odd function

to this trial solution would result in %

N ™M
I(i‘,fu = Z Z 55((:) BJ-(EI (a,gJ- *a“j Hg + G He') (5.1)

' e J!l

Me = MMy - (- ug COs(x- Xp) (5.2)




and all other terms have been previously defined. This odd term allows
the anisotropy of the first-order Boltzmann fluence to be defined and

v specifically controlled by the tizﬁi.coefficient. This control was not
: available in the EPFBE. B

e The trial solution in Eq. (5.1) could be used with several formula-
tions of the first-order Boltzmann equation. The collocation method

could be directly applied to this equation, since no odd-parity fluence

transformation exists. The one possible drawback to applying this method
involves the hyperbolic nature of the first-order Boltzmann equation.
Articles do not appear in the literature that successfully demonstrate the

application of the collocation method to a hyperbolic equation. The

work by Houstis, Lynch, Rice, and Papatheodorou (Ref. 35) considered

if only elliptic equations. A research project attempting this application
' should initially study the effects of collocating hyperbolic equations.

X Another numerical method that would be compatible with the trial

solution in Eq. (5.1) and first-order Boltzmann equation is the weighted

i i

residual technique used by Roberds and Bridgman. Their trial solution

had the same number of unknowns per spatial point as the one in Eq. (5.1),
but only provided a Py type of angular approximation. The Aﬁf term in
Eq. (5.1) offers a P2 type of approximation for the same number of
unknowns. Roberds and Bridgman used the method of finite differences

to evaluate the spatial varition of the fluence. The splines in iq.

(5.1) would serve the same purpose and could be analytically evaluated

using MACSYMA,
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APPENDIX A
DERIVATION OF EVEN-PARITY FORM OF THE
BOLMTZMANN NEUTRON TRANSPORT EQUATION
The monoenergetic steady-state Bgltzmann neutron transport equation

can be written as

A9 (A +op(FIEGRA -fo;c»‘.rif/t)_'iu;ﬁ'; di-Seear= O (A.1)
“n

Since this equation holds for A it must also hold for - A

—A-VE(F:-A)*Q(#}Ici-&)-fo_;(»‘,&’--ri)Icr,a')d&'- Str-21= O°7 (A.2)
4N

If Eqs. (A.1) and (A.2) are added together the following results:
A v(E=ir-8-i)) + O0(F) (Bera)e Iur,-a;) -

[(sersrgeoia) Eaodz- (SearSea) = O
(A.3)
Substracting Eq. (A.2) from Eq. (A.1) results in
A9 (Bea)rBa-ar) vordt (Een- Teaar) -
[( =G (FA /L})I(v Arda- (S(rnl-S(r 4/) (A.4)

“n

Now define the following quanties:

Viea): 2 LEware $eai] (1.10)
X(i’,f\) = [I(ERI-IU’,'}\‘.:] (A.5)
Osq(FAR) = 2 [a_;(rta'-,i) ' o;d‘.z‘i'--»‘i)] (1.16)
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A9 X(RAI+ Oy (#) ‘F(r‘,fu- fogj(r*,/{'-m Ica;v) dA’
Yn
- Sycam = 0 (A.7)
L A-oWra) e Gy (F) J((r‘,a)-fq;“(?,&fuzc?,&‘/ dA’
Yn
~-S.ear = O (A.8)
Now define the following operators
G, fira) = o fra - fa;j(»‘,,:a;\,-fcs:/{')d“ (1.14)
N7
G, frai= o fcr,m—fo;uu;,t'-m fera dA (R.9)
4n
To use the above two equations the following must be proved
f Gig (RAA) Berasdar = [agjc,—,&"a; VYor a )i (A.10)
an Y 4n

]
Gu(rad) : 2 Logwiar- g a-a] (A.6)
]
i 1.
SUFRA) = 2 [ Sczn- 51?,-‘_4;7 (1.11)
S, = s [ Smmf&a-m] o (1a2)

Substituting these definitions into Eqs. (A.3) and (A.4) respectively

results in

This can be done by using the previously presented definitions

] .
f Trg (R AR VYerr ) da'= F/,(c;crt;{'-ano;m/t'--a))(E»‘,mol’ca-av)d»i’ (A.11)
Y

4n
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The term on the right hand side of Eq. (A.11) can be expanded to give
A -
H[ (s aca) $dxs + g rA-A) B Ay + A AA) $eg-2)
Yn

vy AtAr B -2 ) da (A.12)

however, the following relationships are true
{

]
T o RAA) Rgavda = ’q[o;u: A-i) Be-zy dA (R.13)
bn Sy

o

J ¢
Ff O (F-A-A) BR AN AR = H[a;z:,,?-a) $r-aydi’ (A.14)
4 v

n

Substituting the results of Egs. (A.13) and (A.14) into Eq. (A.12) gives
[
2/ ( O (F,AA) +o;(Fj/‘i'--/i:)Icr,£'/ di (A.15)
NN

Using Eqs. (1.16) and (A.15) gives
[ Gy (7 A 4) Beri di
4
thus proving the equality in Eq. (A.10). A similar proof can be con-

structed to show
f O (F AMR) B di = fa;ucr,a'.u Xemaydie (A.16)
an Yn
Using the results of Eqs. (A.10) and (A.16) with the definitions of
Egs. (1.14) and (A.9) in Egs. (A.7) and (A.8) gives
Gy Yerar = Sq(rAI- A9 Xekl (A.17)

(A.18)

G,,_ Xrar = S,‘ ra1-Av YA

Eqs. (A.17) and (A.18) represent a first order set of coupled integro-

differential equations. Now define two new operators such that

P
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Ky Gy Ferar = fera) (A.19)
K, G, forar = Foran- (A.20)
Kg and Ku are the inverse operators of Gg and Gu respectively. The

derivation of these two operators is presented in Appendix B. Applying

these inverse operators to Eqs. (A.17) and (A.18) results in
(A.21)

oo

Yerar= Ky (Sqeaar-Av Xz 41 )
(A.22)

Xrar= K, (S.tB2- Av¥era )

Substituting Eqs. (A.21) and (A.22) into Eqs. (A.17) and (A.18) gives
Aw K S rra-A vk (A Yeris) + Gq Heza) - Sqtrar= O (a.23)

A9 Kj\%cr‘,m -Aw Kj (Ao Xe#ar )+ G, X 4)- 5;‘(?,5'.) = O (a.20)

Eq. (A.23) is called the second order even-parity form of the Boltzmann
neutron transport equation. Eq. (A.24) is the odd-parity form of this

same equation. Rearranging Eq. (A.23) gives

A K (A9 ¥iaa) s Gy Vary = Sytean- A9 K, Sutmd) (1.9)
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APPENDIX B

. -DERIVATION OF THE K, OPERATOR
The K, operator as seen from Aggendix A takes the inverse of the

Gu operator. The G, operator is defined as

G,,_ fo = oy fer) -[%a;“ui'-a) fex ola - (B.1)

(The ¥ variable has been omitted, since it does not effect this deriva-
tion.) Let o (A'A) be defined in terms of a Legendre polynomiaj.
expansion
c;umfan “( 21* L) P aa) (B.2)
,g-o :
From the addition theorem of Legendre polynomials the following can be

stated

L
N Yn a B.3)

®
where Y},;,;‘\) is a normalized spherical harmonic and 1;“('3'1 is the complex

conjugate of Y LA, Substltutmg Eq. (B.3) into Eq. (B.2) yields
»
Gy, CA"A) = Z Z ol ALY Y, (A (B.4)

Lrp mx-£

Now assume that -ﬁia)can be represented in a spherical harmonic expansion

'P(J\)' ZZ '&YI...('“ (B.5)

L=20 m3-L
Placing Eqs. (B. 4) and (B.5) in Eq. (B.1) gives

G, Fa - O'ZZ_ Y A - (ZZ O"“Y(A)YUUZZ_ ‘FYJ'.K"\-‘}O(A' (8.6)

£20mr-£ :0 xu-

Rearranging Eq. (B.6) leads to

90




@© o £ o, -L -
Glwr o2 2 Y. i-2 2, G Vonit) Jg ‘Z.J £Y @iyandy (8.7

Yn

The orthogonality properity of spherica] harmonics states

j( Y A Y (A dA = §J 3 (8.8)
4n
where
=1 i A
s, |
L = QO if L1 )

Using the orthogonal1ty property in Eq (B 7) results in

G, fr = cr,ZZ f Ve w-ZZ 'FY A (8.9)

236 m=-L

Combining terms in Eq. (B. 9) gives

G, fa) = ZZ g*) F, YA (B.10)

Lo m2-L

Eq. (B.10) illustrates that the G, operator alters the spherical harmonic
coefficient ﬁ by a factor of (6,- g%} . By definition an. inverse

operator to Gu must do the following

kMGu. 'F(/{) = 'F(/’i} (8.11)
Therefore if Ku is defined as
o £ )
Kotz = IZ zl (G- G&T .& Ygmti) (B.12)
2o M
then
’<“- G“ ‘f(/\‘.’ ’Zo-g (a—r 0“) (o'r Ylm.('\) = -F(,\) (B.]3)

thus satisfying Eq. (B.11)
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Eq. (B.12) can be rearranged into the following form:

- B.14
k{m-fz 5 E () ) AN

ag M

Rearranging Eq. (B.14) and again usinb the orthogonality property of

spherical harmonics, the fo]]owing resultS'

K fr) = or (ZZ (,\;leZZ o3- a-“- n.lA)Y;AA'.IjZi .x(")d (B.15)

Now make the foHownP def1mt1on

. L4
pa)e 22 T Yoo Yoot (8.16)

L0 mi-L
Using the addition theorem on Eq. (B.16) gives

00 :
Gu(AAl= Z Tg= Ny ﬁ
220

Using the results of Eq. (B.16) and previous definitions the following

can be stated:

— . 1.13

K, fy= o ( ‘wafa; (i) Fean da) (1.13)

123 “u
4n
Using a similar derivation the following form of Kg can be determined:
= )
Kq Fea) = & ( fua ff Org (AR} fer) ar (B.18) |
4y




APPENDIX C
DERIVATION OF THE WEAK FORM OF o
SECOND ORDER EVEN-PARITY FLUENCE EQUATION

The classical technique for derivfng the weak form of an equation I

can be illustrated in the following general example. Let the equation

TV T UREL T eine

be represented by

e

(C.1)

L Vez) = '{&Y)

-

where L is an operator, W) 1is the dependent variable, 4}?) is the

Y LT RTL L YT

source term, and X is a vector representing the independent variables.

If Eq. (C.1) is rearréﬁged and multiplied through by a weight function,

(R, 44

£cl) » the following results:

( Ly - Fn) ety = O (c.2)

Integrating Eq. (C.2) over its domain of definition gives

f ( LYz) - Fezr) e dz = O (C.3)
X

Eq. (C.3) is the weak fbrm of Eq. (C.1). This equation is “"weak" in
that it holds in an integral sense rather than a point-wise sense as in
Eq. (C.1).

The derivation of the weak form of the even-parity equation follows

the above illustration. The even-parity equation is given by

Aok, AvViaa) ¢ 63 Yera) = 5:90‘,&)— A 9K, S (#A) (c.4)

where the operator for this equation is

L = -A.9 ﬁ(bt,ﬁ-'v + (%7 (C.5)




and the source term is

-F(P./'U= 53'("r“,£l-/{~v Kuju("‘;’i L (C.G)

} Rearranging Eq. (C.4) and multiplying through by the weight function

results in

(—,‘{-v K,AvVRA)+ Gj Yerar - %(#,&/ */?v/(uS“_cﬁ‘,fi)){(Ffﬂ) = O (c.7)

Now integrate over the phase space defined by ¥ and A

ﬂ( [(-A‘-v K, AvWVYez)eRal+ (C’g Vera)) ecas -
PR

* e

i (c.8)
i Sj(’T&) &rz) v (Aiw K“SAtrjil)EcEA/] did? = O
l -
; For simplification the following definition is presented
i
: <hera), guaa> = /AC»‘.ugcm) oA (c.9)
g X
5 Substituting Eq. (C.9) into Eq. (C.8) results in
H (C.10)
j L [ GAvK, AvWra, etar v < Gj Vom0, ccrar)> -
. < 534»‘,4), &Rz + LAvK, S, 51, fc:,,c,ﬂdr = O
Again for simplification let
clu‘,,tn K, Av s (C.11) .
and operate on each term in Eq. (C.10) individually. Using Eq. (C.11)
in the first term of Eq. (C.10) results in
-L {Av QURA), EFRI> AP (€.12)
F !

Since A and v have independent coordinate systems, Eq. (C.12) can be

RPTE TT

DNV S
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modified to

-f < VAQUAR), ERAID ol (C.13)
. .

Using the following vector identity (Réf. 36)

V- ECRAI (/izltr‘,ztt) = &FRA) v-(/ic(cm)) - (/‘\ct(i",rtl}- VEFAI (c.14)
EF A v-(/“uiue,mh V- &FAN ARl (AqRA)) - DEFER) (€.15)
in Eq. (C.]3) results in

“If (V'/"Mz“?/'t) ERA)drdA =f/<v7-£<:,m) ftc(.(ﬁjfi}o(;-‘d/‘t -
AR RJe

{[(xtc((r‘/t)-vai‘,&))dr‘o(/t

r

Applying the divergence theorem to the first term on the right hand side
of Eq. (C.16)

(c.16)

i

»r
v

- [ ECRAIQURAI(AR) oS (c.17)
3,

~“Where S represents the boundary of the spatial domain. Substituting
the definition of A into Eq. (C.16) and using the results of the

divergence theorem modifies the first term of Eq. (C.10) to

f< K, A v V2 Al AweRRI D d# —f( ERAN (AR K A-© Yz i >ds  (C.18)
F S,

v

Operating on the fourth term in Eq. (C.10) with both the vector identity
in Eq. (C.15) and the divergence theorem results in the following new
form
-f_< K, S (#A1, A DECRAIDA? +f<:cﬁ,mm-m, Ko Suar>ds  (C.19)
'-
SV

The weak form of Eq. (C.4) is now given by




££—< K, Ao ¥YRA)ARURAID %63%»73;, ERR1) - < £c¢.,1),5:7cr,m>_ -
r

<;<u5;mm,a-vaam>]d: +f<zc¢,mm-‘a'), Ku(Suita1-2vHaa)ds = O
Sv
By the definition of the odd-parity fluence presented in Eq. (A.22),

the term in Eq. (C.20) representing and integration around the spatial

domain can be modified to

f CERA) (AR), Xema1 7 ds (c.21)

Y#ar+ Xzay= O, PeS, , AR <O (C.22)

v, AR >0 (C.23)

Eqs. (C.22) and (C.23) can be rewritten as

Yerar= - Xernal, ®eS,, A-A<O (C.24)
Yeeri= XRal, 7eS,, A-A >0 (c.25)

Using the results of Eqs. (C.24) and (C.25) the following modification
to Eq. (C.21) can be made:

£ < ECRA) (RA), Xza,c1>d§‘=f(—ccr,,u ‘Vcr‘,m (ARIAALS +
v

SvAnco
(C.26)
fé(r‘,m Yerr) (AR dr s
Sy ’GA’O
Eq. (C.26) is equivalent to the following:
CERA)LARL, YRR dS (c.27)

Sv
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Thus the weak form of the even-parity equation that naturally satisfies

the vacuum boundary condition is

f E( K,A® Yza), Avewar> + < Gj Yezr), €222 =
P

<Sjcam, EFRAID - KIS RALAVERAI> AP+ (2.1)

-
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APPENDIX D
-BILINEAR LAGRANGE POLYNOMIALS

A bilinear Lagrange polynomial can be represented as

Lexyr = a,xy +a,x ta,y + a, (D.1)

If a rectangular element is defined as shown in Fig. 16, Eq. (D.1) can
be properly constrained to give the tent function used as a trial solu-
tion in Chapter II. Let Ly, L2, Lss L, be the value of Eq. (D.1) at the

nodes defined in Fig. . Then the following system of equation can be

written
(D.2)
L cx,vi= @ixy +ax +ay, *a
LZ (X;,yz) = aoxgy; + quz + aJy; + a"l
L3 G )3 Ay, * A% t &Y, tay
L..' (xq,Yq)= alquH + a2XL’ + a"y"l * C"H
Now define the matrix H such the
(D.3)
XY, X, v |
[H] = XY X, Y2 I
X3 Ya X3 Vs '
Xa Yy Xy Ye |

and the vector 7\\ and LT where
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Rectangular Element
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A = [.a,,a,,a,,a..'J (D.4)

T

L = LL.,L;.LJ.Lq]
The system of equations represented in Eq. (D.1) can now be represented
as

lH1A-T (0.5)
Multiplying the inverse of'the H matrix on both sides of Eq. (D.5) yields
-1

A=[H] L (D.6)

Eq. (D.1) can be expressed as a product of a row vector P and the column

vector a, if

P = Loxy, x,y. 1] (D.7)

then

-l

L(.x.y)=> ﬁTA (D.8)

Substituting the values of A from Eq. (D.6) into Eq. (D.8) gives
— -
Lexyr= PTIHT L (D.9)

By letting the T assume the following values the tent function of nodes

1, 2, 3, 4 can be found respectively:

(1.0.0.0)
(0,1,0.0)

(0,0,1.0)

(0.0.0, 1)
100
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. APPENDIX E
a .. CANONICAL TECHNIQUES
CANONICAL ELEMENTS/INTEGRATION

i The concept of a canonical element is used in the finite element
method to simplify the integral evaluations associated with the chosen

numerical technique. In Fig. 17 a standard rectangular element with

3 sides parallel to the coordinate axis (x,y) is presented.
1 y
4
: (x15 y2) (X2 ¥5)

* R

b
“ +
{ -, “~ a -
i (x15 ¥1) (x2> 1)

X

Fig. 17. Standard Rectangular Element

Inscribed in this element is a natural coordinate system defined by (n, ).

|
"t
3

‘ is given by

{ o= T (E.1)
2 Y- Ye (E.2)
n o= b '

3
'
|
>

The relationship between the natural coordinates and axis coordinates

This coordinate transformation defines a canonical element that repre-

“

sents the rectangular element in Fig. 18.
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Fig. 18. Canonical Element

From Eqs. (E.1) and (E.2) the following can be generated

o f = (E.3)
i L = A x = ac{f -

Eﬂ1¥ ! _ - (E.4)
dy = b => oly = beln

Let f(x,y) be a function that is identically defined over all finite
elements in the (x,y) coordinate system shown in Fig. 17. Using the
coordinate transformation equations this function can be redefined in
the natural coordinate system aS'F<ai**c.£n,'V<) . Since this func-
tion is identically defined in all elements the transformation equations
will generate exactly the same functional representation in the canonical H
element for all the elements in the (x,y) coordinate system. The only

difference is the scaling factors a and b that are related to the dimen-

sion of the element. Thus the following equality holds

X Yy V1
ff oy dxely = ab//ﬂ?.n)djo(m_ (£.5)

-y "=

This relationship allows the integral evaluation of f(x,y) over a finite
element to be done once over the canonical element. If a finer discreti-
zation is necessary the canonical evaluation need be changed only by the

new dimension parameters a, b caused by this mesh refinement.




GALERKIN WEAK FORM EQUATION/ISOTROPIC SCATTER

The global integrals in the Galerkin weak form equation resulting

from the Gg operator and using isotqqpic scatter is

o;,m[ Y AndA! (E.6)
un

If W) is represented by the trial solution of Eq. (2.20), Eq. (E.6)

gives

g (#) L;wf[LJ-cu,u dAxdu . (E7)
B x

The bilinear Lagrange polynomials meet the requirement of being identi-
cally defined over ali!e]ements, thus the integral in Eq. (E.7) can be
evaluated over a canonical element as
o
ab” L cf,n) dfedn (z.8)

-1
The evaluation of Eq. (E.8) can be done once and the result used for all
other angular elements.

GALERKIN WEAK FORM EQUATION/ANISOTROPIC SCATTERING

The global integral resulting from the Ku operator using a P] aniso-

tropic scattering representation is
G5 (7!

Oy (F) e+ Ji-pl Wi costx-x1) A VR A dA” (E.9)
4n

If the even-parity fluence is again represented as a tensor product of
bilinear Lagrange polynomials, then the derivatives that result from

the gradient operator are identical over each angular element. The
integrand of Eq. (E.9) contains other functions besides these derivatives.
These functions vary differently over each angular element, thus elimin-

ating a single canonical evaluation that would represent all these




. ey

elements. Eq. (E.9) can be evaluated over the canonical element; how-

. ever, it must be sepqﬁately evaluated for each element defined_in the

angular domain since the location of the element now affects the value

2 of this term.
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APPENDIX F
TOTAL TERMS IN A-wecFA) K, A v Yzl o
The MACSYMA program did not have enough available core to egpand
the first term in the Galerkin weak.f;rm equation into all its distinct
terms. The reason this core 1imit was reached can be seen from the
following evaluation. The first term of the Galerkin weak form equation

can be expressed as

f[/i-v etar K, A-v V@A) dide (F.1)

r Ny -

Using the definition of the K, operator expands the integrand in Eq. (F.1)

to give

]
/"L.vgc;.:,“‘_)[o}(ﬂ(/{'vw(ifj‘\)* a AAr A v &) aj] (F.2)
on

For this evaluation only the following is used

/rvccf./t)[ O (AATA 9 Yz a0 o A (F.3)
4n

Applying the definition of the .A- @ operator in cylindrical geometry

expands the integrand to

(Jl-u” coscx ! a(Pw(P‘.fk')) _ (F.4)
A REFAN) G (AR e Jp

un
(T Yot 3 siacxl) . d Hza B
e g e w5 ol

If WrA) is represented by linear Lagrange interpolating functions in

a four-dimensional phase space (@t a4 x) the following general expression

can be written

W(f,;\)= (a.‘be)((ﬁd!) (eof,..)(g'hx} (F.5)
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Substituting Eq. (E.5) into the first term in brackets in Eq. (E.4) gives

J“'wécoﬁf)(cfdz)(c*£u)(3*Ax)(“*258) - (F.6)

Eq. (F.6) contains sixteen distinct terms. Proceeding in the same man-

ner with the other two terms in the brackets results in

-'—'-e#'i (a,fb[)) (crdr) (e -Fp)(gco:lxl-bh$m(x/+/1){$/n.(xl) | (F.7)

,U.(a.*bto)(ewF,{)(j,},x)d ) (F.8)

-

Eq. (F.7) contains twenty-four distinct terms and Eq. (F.8) contains
eight. The total number of distinct. terms resulting from the bracketed

terms in the integrand of Eq. (F.4 ) is forty-eight.

The odd-parity differential scattering cross section can be repre-

sented for a P3 legendre expansion as

OL,LCuu = T 4Ug + Gy LQJ (F.9)

where

Mg = L+ x/l—p.':'\[l-,u‘ 'CoS(x) CosCx) 4 1= W' Ji-put siatx) sintx’) (F.10)

Eq. (F.10) represents three distinct terms and cubing this equation
results in ten for a total of thirteen distinct terms. Therefore, the
integrand in Eq. (F.4) contains 624 distinct terms.
For now ignore the integration over A’ and define the weight function
as

E(,;.,IU H (aa.+ bb{:) ((’C ?dﬂ(i/ (CCf 1[{/4} (379 A/)x) (F.]])
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The coefficients are different than those in Eq. (F.5), because in the
Galerkin method different combinations of Lagrange polynomials all
defined over the samekfinite element are multiplied together (see'Eq.
(2.18)). The A-v&rA) has forty—eié;\‘t'distinct terms just as A-e Ve 4,
Multiplying the forty-eight distinct terms of Eq. (F.11) by the 624
terms resu’ting from the previous work generates a total of 29,952
distinct terms. This number is an absolute minimum since the integra-
tion operation was not included. The integral evaluation over a rectan-
gular element of arbitrary dimension would generate at least four mé}e
terms for each term evaluated. If the integral was complex, then more
than four terms could result.

Obviously many of the terms are similar and could be combined to
reduce the total. MACSYMA can only begin this simplification after all
the distinct terms are generated. Several approaches were attempted to
alleviate this shortcoming in MACSYMA, but all proved unsuccessful. The
main problem was the limited core capacity of the DEC 10 on which this

program resided.
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APPENDIX G
DERIVATION OF ANGULAR SYNTHESIS FUNCTION ‘
In Chapter III an angular synthe;js function was derived for-use
with the collocation method. The sefectﬁon of this function was guided
by two basic criteria. The first criterion dictated that the form of

an angular synthesis function must be simple to avoid the problems

encountered in Chapter II. The second criterion is the basic tenet of
using a synthesis function that accurately approximates the angular
variation of the neutron fluence. As mentioned in Chapter II, the -"
choice of an appropriate synthesis function is ma e from experience,
previous calculations, or intuition. -

The collocation angular synthesis function was selected from the

definition of the even-parity fluence. This fluence can be represented

as

Ver A= z [Icmuica-mj (6.1)

The work accomplished by Roberds and Bridgman (Ref. 23) demonstrated
that a spheroid can be used as an angular synthesis function for the
regular Boltzmann fluence. Fig. 19a illustrates a spheroid that could
be used to represent £cri) for some anisotropic angular distribution.
Fig. 19b is a polar plot of F(#-1) using the same spheroid synthesis
function. If the two spheroids in Figs. 19a and 19b are added together
the result is the even-parity fluence and the polar plot of this addition
is presented in Fig. 19c.
The selected synthesis function must have the general form repre-
sented by Fig. 19c. In Chapter II a centered ellipsoid was proposed

as an angular synthesis function. Though this function would adequately
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Fig. 19. Derivation of Collocation Angular Synthesis Function
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approximate the angular distribution of Fig. 19¢c, it does not meet the

first criterion as already demonstrated. A function that would accurately

approximate Fig. 19¢ is

Atug = | +ug (6.2)

o el FTIO

A polar plot of this function appears in Fig. 19d. A comparison of Fig.

T

19¢ and Fig. 19d demonstrates the adequacy of Eq. (G.2) to approximate

B
-
5w

the angular distribution of the even-parity fluence in an air-over-

-
-

ground problem.

The largest component of the Boltzmann fluence in an air-over-ground
problem is aligned paﬁé]]e] with a ray drawn from the spatial location
of the point source to the spatial location of interest. The angular
coordinates of this streaming direction in the local coordinate system
changes from one spatial location to another. Let the streaming direction

for a spatial location be represented by Mo and X, in the loca) coordin-

ate system. If theu, variable in Eq. (G.2) is defined in terms of the

law of cosines, the following results

2
Ly A(,u.x)= |+ (#oufJ/—ug V- u? COS(’X-‘J(D)) (G.3)

Eq. (G.3) represents the angular shape presented in Fig. 19d and
has the capability of being aligned in the streaming direction at any
; spatial location. Fig. 20 is a polar plot of Eq. (G.3).

i
r
F} The synthesis function represented in Eq. (G.3) satisfied the two

criteria previously presented. In the collocation method Eq. (G.3) is

used in the following form

M N
WU’:H:"‘) = Z Z 8((5) GJ(Q’ (a“.J. * ay; (,uau..J,-uo;'/,-ug‘(o.t(x-xo)ﬁ) (G.4)

e J'-l
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Fig. 20. Definition of Callocation Angular Synthesis Function
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The coefficients QA and U, are determined from solving the global

) matrix formed from applying the collocation method to the EPFBE. .These

! two coefficients can be adjusted to represent even-parity angular flu- 3
ﬁ ence shapes varying from highly anisoifopic to isotropic. The form of f '
j Eq. (G.4) is simple and was analytically integrable when placed in the

}4 EPFBE used in the collocation method.
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APPENDIX H
i . FLOW CHARTS
; This appendix contains the flow Qipgrams for both the Ga]erkih and
:g collocation program presented in Caﬁpiers II and III respectively for

generating a matrix representation of the EPFBE. An explanation of the

Lo®Ll

numbers in the diagrams is presented below.

" eI

Galerkin Program (Fig. 21)

PR

1. The following parameters are inputed. |

& a. Maximum number of mesh lines in(o, 2,4, X directions.

j;i b. Number of spatial and angular test functions per finite element.

3 c. Global spatial node and angular node matrix that relates nodes

to elements. !
d. Mesh node values for o, 2,4, and X coordinates.
e. Order of differential scattering cross section.

f. Cross sections.

2. Quadrature sets for use with spatial and angular numerical integration

are selected and inputed. ;
3. Print out all input data as a check.

4., Zero all elements in the global matrix and load vector.

5. Determine coordinates for defining all angular finite elements.

--- Start loop over spatial finite elements.

6. Select a spatial finite element and define its location in the

O o v

spatial mesh. |
--- Start loop over angular finite elements. ‘

7. Select an angular finite element and from step 5 identify its loca-

Ak e et~

tion in the angular mesh.

.




8. From the coordinates of these selected elements calculate the para-
meters needed to transform each into a canonical element representation.
9. Select a quadrature point for theéé, Z .M » and X variables and an
accompanying weight function. ’

10. Select a combination of bilinear Lagrange polynomials representing
the spatial and angular test functions.

11. The numerical evaluation of the integrals involved with the source
term of the Galerkin weak form equation is performed. The integrands of
these integrals are expressed in terms of the test function and th;ir
derivatives selected in step 10 and are evaluated at the quadrature
points defined in step 9. These evéluated terms are multiplied by the
corresponding weight function associated with these quadrature points and
the product is stored in an element of the load vector. The location of
this element in the load vector is determined by the test function com-
bination. This element represents the evaluated integrals in the source
term when all quadrature points and weights have been used and their
resultant products summed. The value of the test functions and their
derivatives that appear in the source term integrands are determined by
a series of function routines and subroutine programs. These subprograms
define the test functions in a canonical element, evaluate these func-
tions for the selected quadrature points, and asssemble these evaluated
functions into a representation of the source term integrands.

12. Select a combination of bilinear Lagrange polynomials representing
the spatial and angular trial functions.

13. The numerical evaluation of the local integrals containing the

even-parity fluence in the Galerkin weak form equation is performed.

The integrands of these integrals are expressed in terms of the trial
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functions and test functions selected in steps 12 and 10 respectively.

These integrands are evaluated at the quadrature points defined in step

9 and the result of this evaluation j§.multiplied by the weight functions

associated with the quadrature points..'This product which represents a
partial evaluation of the weak form integrals is stored in one element
of the global stiffness matrix. The position of this element is deter-
mined by the test and trial function combinations. This element repre-
sents the full evaluation of the Galerkin weak form local integra]iufor
the selected test and trial function combination after the contribution
of all quadrature point evaluations have been summed. As mentioned in
step 11 several subprdérams contribute to this evaluation.

14. Has a different spatial trial function been selected in step 12
since the last iteration?

15. Select an angular finite element for global evaluation of the global
integrals in Galerkin weak form equation.

16. Calculate the parameters needed to transform the angular element
selected in step 15 into a canonical element representation.

17. Select quadrature points for the u' and x' variables and the accom-
panying weight functions.

18. Select a bilinear Lagrange polynomial trial function defined in the
angular element selected in step 15. The test functions and spatial
trial functions are the same as previously chosen.

19. The numerical evaluation of the global integrals (integrals defined

over the entire angular domain) resulting from the Ky and G, operators

g
is performed. The integrands of these integrals are expressed in terms
of the test function selected in step 10, spatial trial function selected

in step 12, and angular trial function in step 18. The result of this
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Fig. 21. Galerkin Program Flow Chart
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evaluation is stored or added to existing values in the global stiffness
matrix in a position determined by the test and trial function combina-
tion. The subprograms mentioned in step 11 and 13 perform the e&aluations.
20. Have all angular trial functions for the global integral evaluation
been used?

21. Have all quadrature points for the u’' and x' variables been used

to evaluate the global integrals?

22. Have all angular elements been used for the global integral evglua-
tions? -

23. Have all spatial and angu]ér trial function combinations in step

12 been used?

24. Have all spatial and angular test functions combinations in step

10 been used?

25. Have all quadrature points for the € » 2,4, and X variables been
used?

26. Have all angular elements from step 7 been used?

27. Have all spatial elements from step 6 been used?

Collocation Program (Fig. 22)

1. The following parameters are inputed.
a. Number of collocation points in g direction.
b. Number of collocation points in Z direction.
c. Number of mesh points in @ direction.
d. Number of mesh points in Z direction.
e. r coordinate collocation points.
f. £ coordinate collocation points.
g. Mesh coordinates in o direction. )

h. Mesh coordinates in Z direction.

n7




i. Total macroscopic cross section and P3 cross sections.

J. Height of burst.
2. A1l global matrig elements zeroed. -
3. Start of o coordinate collocation '~lioop. A p coordinate collocation
point is selected and used for evaluation.
4. Splines in p coordinate that have a value at selected @ coordinate
mesh point are identified.
5. Start of Z coordinate collocation loop. A 2 coordinate co]]ocagion
point is selected and used for evaluation, -
6. The streaming direction and 90 degrees off the streaming direction
in the x=0 plane at thé selected spatial collocation points are deter-
mined.
7. Ellipsoidal synthesis function pitch is set based on the streaming
direction. Spatial derivatives of the pitch function (cosn orsinq_)
are determined for the selected spatial collocation points.
8. Splines in Z coordinate that have a value at selected Z coordinate
are identified.
9. Start lToop over all splines in e coordinate that were previously
identified in 4.
10. Start Toop over all spiines in 2 coordinate that were previously
defined in 8.
11. Evaluate all terms in EPFBE that have spatial dependence. This
encompasses an evaluation of the E%qp;f}t!) terms in Eq. (3.11) and
their derivatives.
12. Decision block to determine if all splines in Z coordinate identified

in 8 have been evaluated (Y=Yes, N=No).
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13. Decision block to determine if all splines in p coordinate identi-
fied in 4 have been evaluated.

14, Evaluate all tefms in EPFBE that have angular dependence. This
encompasses an evaluation of the a.‘;j' ¥ a,v- (uuo*mmwa(x-xo))z
term in Eq. (3.11) and its derivative with respect to the u and x vari-
ables. (Primed and unprimed.)

15. The spatial and angular contributions of the EPFBE found from 11
and 14 respectively are combined to calculate the value of all terms in
the EPFBE. -
16. Value of EPFBE calculated in 15 is stored in appropriate global
matrix element. The value of the source terms is stored in the load
vector. The position of these elements in the global matrix and load
vector is determined by the spatial spline combination and angular col-
location points.

17. Decision block to determine if both angular collocation points have
been evaluated.

18. Decision block to determine if all 2 coordinate collocation points
have been evaluated.

19. Decision block to determine if all p coordinate collocation points

have been evaluated.

Global matrix formed.

19
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COLLOCATION

Collocation Program Flow Diagram

Fig. 22.
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APPENDIX I
DERIVATION OF NORMALIZED B. SPLINES OF ORDER 4 )

In Chapter III the spatial variation of neutral particle fluehce
was approximate by cubic spline funct%bhs defined in the and £ variables.
The value of these functions for various spatial Tocations was calculated
in the collocation program by a subroutine called BS. The following
derivation generates the equations used in this routine for defining
and evaluating these splines.

Assume the node sequence t], t2, t3, t4, t5 illustrated in Fig: 23.

.t] tz ' t3 t4 t5

Fig. 23. B Spline Node Sequence

Define the expression (.s—'t):-l such that

k

order of the spline

K-

degree of the spline

(5-t)" " = g (s-¢)"" if 52t
o if s<t

Using the above definitions define a new variable Png(f) as

N(,K (t) = (t‘”"‘ tk)[‘tk‘ ..... 'At J‘(S_t)f" (I.])

Cri

where
¢ = number of the first node
C¢t,...t,J= divided difference operator operating on the S variable and

defined in the following manner.

[xJs fs1 = Ffexnt
[xl,xa); 'F(S, = 'E_(_fx"]_‘__f_{(T!'J

[Xu.....YJ;'[LSJ = (EX., """ %) Fisi = Dok 'YA-'J'F“’)/()‘A‘ X, )
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Using Eq. (I.1) and setting K=4 the following representation of the B

splines can be written for the node sequence in Fig. 23

N,, (0= (t-t) [ttt 4,45 Ts (5240 B

i Now apply the definition of the divided difference operator

2
" [ttt ¢ ]ot)= Lhltutdeth - Tht bt 6ot), (1.3)
. : b T ¥ s 'y -ts_ t'

The following series of equations represent a repeated application of

the divided difference operator to the two terms on the right hand’side

AT AW e vE s

of equation I.3

o <t - :" Lt - f
s A= [t to t ) 6oty = Blats ‘7"‘;" tﬁl steds(st) (1.4)
: s- 1,
;: [tutatadss-til-[ 4.6 4] (st )s (1.5)
¢ [ttt tyd. (-t = : .
i, B L I3 , vhde 'tH- 't,
: To A and B the following reductions can be made
; C = [t te) (s-1)] = “*'*‘7"";'3 *,c':*"“l“'t’L (1.6)
\j P s s- 3
: )9 _ 3
’ D=F=[tut,t -t = [t"t“‘]’“fc" JcCt“t‘]‘“‘“* (1.7)
7 y- 12

t -t)3-[¢.t -t s

P F=Lltt t] st = Lt ks _é f[ delstle (1.8)
! I !

1 Applying the defintion of the divided difference operator to C, D, E,

and F results in

2
(te-t)] - (t,-t) (1.9)

= - )1 =
G [tn.,,tr]_,(s { ¢ fs- tq

t,. 4,

!

|

IJ ¥ 2

3 He [, 6] -t = Lhatle= (Luotlh (1.10)




(t-¢)] — (t,-¢17

T = Ct,t,2s-t)] =

123

|
|
i t;-f;_
i (1.11)
|
! : : : -
| T= [t 6.3 (s-¢)] = LZazth = (%-1), (1.12)
% -tz .",t'
; .
: By back substituting the following relationships are formed.
’ _ G- H 1.13)
C = (1.

i ts-to
i D=E- -H= 1.14
5 fw~tz ‘. ( )
: I-7J
b F = (1.15)
:i .ts‘t;
¢ .
1
s Further back substituting results in

C-E

= 1.16

, ot ( )
)
}
- _ O-F (1.17
; B = t,-t !
| +
;
4 Finally the form of the B spline used in the collocation program is
}; defined as
= (t-t) A-B . A-B (1.18)
| é?(f) s 6t
|
? The spline in Eq. (I.18) is normalized such that
- t
{ N tidt = | (1.19)
o t,
¥
y
B
i
'
4
!
}
:
{
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